Теплоемкость нержавеющей стали

Теплоемкость нержавеющей стали

1.3.2. Теплоемкость, теплопроводность материалов.

Теплоемкость , это способность накапливать тепловую энергию в материале при его нагревании . Численно удельная теплоемкость равна энергии, которую нужно ввести в единицу объема материала, чтобы нагреть его на один градус. Размерность удельной теплоемкости [Дж/(кг·К)]. Эта величина экстенсивная, т.е. можно говорить о теплоемкости отдельной молекулы или атома, затем их просуммировать и получить теплоемкость одного грамма или одного моля вещества. Значение теплоемкости зависит от природы материала. Самая высокая теплоемкость у воды 4.2 ·10 3 Дж/(кг·К) или 4.2 кДж/(кГ·К). У подавляющего большинства материалов удельная теплоемкость порядка 1 кДж/(кг·К). Теплоемкость зависит от температуры. Вблизи нуля Кельвина она мала, в рабочем диапазоне температур — слабо меняется с ростом температуры. Какие-либо скачки теплоемкости связаны со структурной перестройкой тел, например с растянутым плавлением у таких веществ, как парафин. Здесь можно упомянуть пример с парафиновой прогревающей повязкой, когда тепло долго сохраняется за счет высокой теплоемкости парафина и повязка греет длительное время.

Теплоемкость газов хорошо изучена теоретически. Для газов даже введено два типа теплоемкости: при постоянном давлении Cp и при постоянном объеме Cv. Обычно рассматривают теплоемкость, приходящуюся на одну молекулу. Тогда для одноатомного газа Cp=5/2 kT, а Cv=3/2 kT. Почему при постоянном давлении труднее нагревать молекулы? Ясно, что при этом газ расширяется, значит, нужна дополнительная энергия, чтобы нагревать газ при постоянном давлении. Отметим, что для многоатомных газов теплоемкость выше, т.к. при нагревании требуется энергия для вращения молекул, колебаний и т.п.

Приведем выражение для тепловой энергии материала:

где m-масса материала, T2,T1 конечная и начальная температуры.

Это выражение можно переписать для локальных, удельных, параметров:

где Q/V — удельное выделение энергии, d — плотность материала.

Выражения (1.27-1.28) позволяют определить изменение температуры материала в процессе его работы, например, за счет диэлектрических потерь энергии, протекания тока или какого-либо другого процесса. Энерговыделение Q задается конкретными процессами, протекающими в материале.

Теплопроводность определяет способность передать тепловую энергию через материал. Это тоже важная характеристика, она характеризуется коэффициентом теплопроводности l . Численно он равен потоку q проходящему через площадку куба единичной площади, при перепаде на его гранях температуры 1 ° С. Лучше всего передают тепло металлы, так у меди l .=400 Вт/(м·К), для серебра чуть больше (418), для алюминия 200 Вт/(м·К), для нержавеющей стали примерно 20 Вт/(м·К), для простых сталей примерно в два раза выше.

У диэлектрических материалов теплопроводность обычно значительно ниже. Например у бетона l .=0.6 Вт/(м·К), у трансформаторного масла l .=0.13 Вт/(м· К), для воздуха l = 3,67 10 -2 Вт/(м·К). Единственный диэлектрик имеет высокую теплопроводность, это окись бериллия l .» 200 Вт/(м·К). Отметим, что в справочниках часто приводят l . в устаревших единицах, например кал/(см·сек· °С); для перевода в систему единиц СИ нужно умножить на 418.

Для газов и жидкостей обычная теплопроводность играет незначительную роль. В этом случае главную роль играют конвекция и излучение.

Конвекция возникает из-за того, что нагретые жидкость или газ расширяются, их плотность уменьшается, они начинают “всплывать” под действием выталкивающей силы Архимеда. За счет этого возникают локальные течения, которые эффективно уносят тепло из нагретой зоны. В теплотехнике развит аппарат расчета теплопроводности при учете конвекции. Грубо, можно сказать, что конвекция увеличивает теплопроводность в несколько раз.

Я занимался расчетами теплопроводности при разработке электроотопительных приборов на основе материала “ЭКОМ”. Так вот, учет естественной конвекции в воздухе приводит к увеличению эффективной теплопроводности в конвекторе из двух параллельно расположенных вертикальных пластин примерно в 10 раз при температуре поверхностей примерно 150 -200 ° С.

Тепловое излучение также важно, особенно при повышенных температурах. Основное выражение, используемое в оценках, имеет вид:

где x — коэффициент серости излучающего материала, s — постоянная Стефана-Больцмана, s =5.67 10 -8 Вт/(м 2 К 4 ). Коэффициент серости зависит от сорта материала, в особенности от его теплопроводности и состояния поверхности. Для металлов этот коэффициент невелик, он меняется от единиц до десятков процентов, в зависимости от шероховатости поверхности, причем более шероховатой поверхности соответствует больший коэффициент серости. Для диэлектриков (исключая специальные композиции с электропроводными компонентами), e находится в диапазоне 80 — 95%. Оценки показывают, что этот фактор становится главным при температурах порядка 100 градусов и выше.

Самая высокая теплопроводность в нормальном диапазоне температур может быть достигнута путем переноса теплоты испарения. Если где-то испарить жидкость, а затем ее конденсировать в другом месте, то теплота испарения заберет часть тепла от нагретого участка и передаст его при конденсации в другом месте. Это эквивалентно теплопроводности между этими участками. Оценки показывают, что эквивалентная теплопроводность может превысить теплопроводность меди примерно в пять тысяч раз.

Температурные коэффициенты. Практически все свойства материалов зависят от температуры. Обычно это учитывается введением т.н. температурного коэффициента. Строго математически для какого-либо свойства х, он вводится выражением

где х может быть любой характеристикой материала. Размерность любого температурного коэффициента — 1/К. Например возьмем в качестве х размер l образца материала. Тогда

означает температурный коэффициент расширения материала. Для диэлектрической проницаемости, это будет температурный коэффициент диэлектрической проницаемости, для удельного сопротивления — температурный коэффициент удельного сопротивления.

На практике обычно пользуются линейным приближением, считая изменение характеристики с температурой малым, по сравнению с основным значением. Для этого случая можно явно выписать температурную зависимость.

Для удельного сопротивления r (Т)= r (Т )(1 + Тк r (Т-Т ))

Для диэлектрической проницаемости e (Т)= e (Т )(1 + Тк e (Т-Т ))

Конкретные значения температурных коэффициентов материалов можно найти в справочниках. В случае сильного изменения характеристик с температурой (например, диэлектрической проницаемости в случае сегнетоэлектриков) линейным приближением пользоваться нельзя. В этих случаях следует воспользоваться таблицами или графиками.

Свойства нержавеющей стали – эксплуатационные и технические достоинства

Особые свойства нержавеющей стали обуславливают ее активное использование в самых разнообразных отраслях промышленности и в быту. К достоинствам нержавейки относят повышенную прочность, небольшой удельный вес и теплопроводность, отличное сопротивление коррозии и качественную свариваемость.

1 Категории нержавейки – сталь бывает разной

Нержавеющие сплавы принято подразделять на пять типов в зависимости от микроструктуры сплавов. С этой точки зрения они могут быть:

  • ферритными;
  • аустенитными;
  • дуплексными;
  • жаропрочными;
  • мартенситными.

Самыми распространенными являются аустенитные виды нержавейки. Они практически не окисляются в процессе эксплуатации, имеют высокие технические и эксплуатационные характеристики (хорошая вязкость, пластичность, устойчивость к химическим воздействиям, небольшой удельный вес и коэффициент текучести). Подобные свойства обеспечиваются введением в состав аустенитной нержавейки 10–20 % никеля и примерно 23 % хрома.

Читать еще:  Травление рисунка на металле своими руками

Стали с ферритной микроструктурой демонстрируют уникальные характеристики при эксплуатации в агрессивных средах.

Они имеют высокую стойкость к коррозии при повышенных температурах, малый предел текучести и особые магнитные свойства (магнитную проницаемость). В таких сплавах хрома содержится не более 17 %. Магнитные разновидности нержавейки редко используются для производства бытовых изделий. Чаще они применяются в промышленности для изготовления разнообразных конструкций.

Реже применяются мартенситные стали. Их проницаемость (магнитная) ниже, а ключевые технические достоинства следующие:

  • небольшой коэффициент пластичности;
  • хорошее удельное сопротивление на разрыв и свариваемость;
  • высокая прочность и твердость;
  • малый вес.

Жаропрочные и дуплексные сплавы используются для особых целей. Их магнитные характеристики (проницаемость) минимальные, зато они демонстрируют уникальную прочность и сопротивление коррозии при эксплуатации в высокотемпературных и хлорсодержащих средах. Поэтому подобные стали активно применяются для выпуска изделий химической и пищевой промышленности.

2 Технические показатели – самые главные цифры

Удельный вес аустенитных и жаропрочных сплавов равняется 7,95 гр/см, ферритных и других – 7,7, коэффициент электросопротивления – 0,72–0,9 для всех сталей, кроме ферритных. Электрическое сопротивление последних составляет 0,6. Коэффициент твердости нержавеющих сплавов следующий:

  • По шкале Роквелла – 70–88 единиц для жаростойких и аустенитных сталей, 75–88 для ферритных.
  • По шкале Бринелля – 120–190 (аустенитные), 135–180 (магнитные) и 145–210 (жаропрочные).

Предел прочности нержавеющих сплавов с аустенитной микроструктурой варьируется от 500 до 690 Н/мм 2 . Все зависит от конкретной марки стали. А вот прочностной предел ферритных сплавов обычно выше – до 900 Н/мм 2 . Другие характеристики рассматриваемых сталей:

  • предел упругости – 195–400 Н/мм 2 ;
  • вязкость (ударная) – 120–160Дж/см 2 (для ферритных композиций – не более 50);
  • температура появления окалины – 840–1120 °С;
  • магнитная проницаемость ферритных сплавов – 1,008 единиц (при комнатной температуре).

Предел текучести большинства марок нержавеющих сталей за минуту равняется около 205 МПа. Эта величина справедлива для всех категорий сплавов за исключением ферритных. Показатель текучести последних обычно ниже на 10–20 МПа.

Еще одна важная характеристика рассматриваемых коррозионностойких сплавов – их теплопроводность. Под ней понимают возможность материала пропускать через себя тепловую энергию (передавать ее). Теплопроводность нержавейки равняется 16–20 Вт/м*К. Это очень малый показатель. Для сравнения скажем, что теплопроводность алюминия находится на уровне 200, а меди – 400 Вт/м*К.

3 Свариваемость нержавейки – прочные соединения

Сварка рассматриваемых сплавов производится по таким методикам:

  • аргонодуговая с помощью TIG-электродов (содержат вольфрам);
  • ручная дуговая;
  • полуавтоматическая.

Лучше всего свариваются аустенитные марки нержавеющей стали. А вот сварные соединения ферритных сталей получаются более хрупкими. Это стоит учитывать при обработке таких сплавов. Важный момент! Сварка всех видов нержавейки должна осуществляться после предварительного подогрева стальных изделий. Обычно достаточно нагреть их до 150–160°.

Ручная дуговая сварка нержавеющих сплавов выполняется двумя типами электродов: с рутиловым покрытием; с основным (карбонаты магния и кальция) покрытием. Во втором случае операция ведется исключительно на обратной полярности и постоянном токе. Полуавтоматический процесс рекомендован для сварки больших по толщине листов нержавейки. А вот аргонодуговая сварка обычно применяется для соединения тонких коррозионностойких изделий.

Таблица удельной теплоемкости некоторых металлов и сплавов

Чистая энергия

Таблица удельной теплоемкости показывает способность веществ аккумулулирость тепловую энергию. Чем больше коэфициент теплоемкости, тем больше энергии неодходимо, чтобы нагреть тело. И, соответственно, чем больше коэфициент теплоемкости, чем больше энергии способно отдать тело при охлаждении. Теплоемкость измеряется в Дж/(кг*К). Т.е. удельная теплоемкость — это количество Джоулей, необходимых для нагрева тела массой 1 кг на 1 градус по Кельвину.

Краткая таблица удельной теплоемкости

Ниже представлена краткая таблица с самыми частоиспользуемыми веществами:

Расширенная таблица удельной теплоемкости

Как видно из таблицы теплоемкости веществ, водород имеет самый большой коэфициент. Но и обычная вода имеет неплохой показатель.

Показатель теплоемкости веществ используется, когда нужно сохранить тепло или холод, например, в системах кондиционирования и отопления. Чем больше теплоемкость вещества, тем труднее нагреть его, но и охладить его тоже сложно. Вещества с небольшой теплоемкостью используются так, где нужнен быстрый нагрев или охлаждение.

Теплоемкость материалов — таблица

В строительстве очень важной характеристикой является теплоемкость строительных материалов. От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания. Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.

Удельная теплоемкость материалов

Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды. Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.
Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.

Для того, чтобы рассчитать теплоемкость того или иного материала, необходимо обладать такими данными, как:

  • вид и объем нагреваемого материала (V);
  • показатель удельной теплоемкости этого материала (Суд);
  • удельный вес (mуд);
  • начальную и конечную температуры материала.

Теплоемкость строительных материалов

Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.

А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.

Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.


Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.
Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.

Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.

Сравнительная характеристика теплоемкости основных строительных материалов

Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.

В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг.
Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С. Для выбранных условий рассчитываем теплоемкость выбранных материалов:

  1. Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
  2. Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
  3. Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).
Читать еще:  Продолжительность нагрузки сварочного аппарата это

Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.

Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.

Теплоемкость и теплопроводность материалов

Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.

Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.

Свойства металлов

Плотность. Это — одна из важнейших характеристик металлов и сплавов. по плотности металлы делятся на следующие группы:

легкие (плотность не более 5 г/см 3 ) — магний, алюминий, титан и др.:

тяжелые — (плотность от 5 до 10 г/см 3 ) — железо, никель, медь, цинк, олово и др. (это наиболее обширная группа);

очень тяжелые (плотность более 10 г/см 3 ) — молибден, вольфрам, золото, свинец и др.

В таблице 2 приведен значения плотности металлов. (Это и последующие таблицы характеризуют свойства тех металлов, которые составляют основу сплавов для художественного литья).

Теплоемкость нержавеющей стали

Ли удельного, а общей тепловой емкостью, в общепринятом физическом смысле, называется способность вещества нагреваться. По крайней меретак говорит нам любой учебник по теплофизике — это классическое определение теплоемкости (правильная формулировка). На самом деле это интересная физическая особенность.Мало знакомая нам по бытовой жизни «сторона медали «.Оказивается, что при подведении тепла извне (нагревании, разогреве), не все вещества одинаково реагируют на тепло (тепловую энергию) и нагреваются по разному.Способность стали 20 металлического сплава получать, принимать, удерживать и накапливать (аккумулировать) тепловую энергию называется теплоемкостью стали 20.А сама теплоемкость, является физической характеристикой, описывающей теплофизические свойства металла.При этом, в различных прикладных аспектах, в зависимости от конкретного практического случае, для нас важным может оказаться то одно.Например: способность железа принимать тепло или способность накапливать тепловую энергию или «талант » металла и сплава содержать ее.Однако, несмотря на некоторую разницу в физическом смысле, нужны нам свойства будут описаны теплоемкостью стали.

Удельная теплоемкость стали 20. Уд. тепловая емкость металла Ст20 (железа ).Теплофизические свойства металлов , металлических сплавов и тепловые характеристики железа — справочная информация и краткое пояснительный комментарий к статье : удельная теплоемкость стали 20 — етомассовая тепловая емкость железного сплава Ст20.

Общая тепловая емкость металла Ст20. Что такое ( уд. ) Удельная теплоемкость стали 20 ( железа , металлического сплава ). Чем отличаются эти виды теплофизических характеристик металла , почему нельзя обойтись одним физическим параметром, описывает тепловые свойства стали марки Ст20 и зачем понадобилось » умножать сущности , усложняя жизнь нормальным людям » ?

Здесь нам на помощь приходит очень простой, но «очень научный » метод.Он сводится к не только к приставу «уд. — Удельный «, перед физической величиной, но к изящному решения, которая предусматривает исключение из рассмотрения количества вещества. Естественно, «неудобные, лишние » параметры: массу илиобьем сталиисключить совершенно невозможно. Хотя бы по той причине, что если не будет количества металла марки Ст20, то не останется и самого «предмета обсуждения «.А вещество должно быть. Поэтому, мы выбираем некоторый условный стандарт массы железа или объема металлопроката, который можно считать единицей.Для веса проката стали 20 такой единицей массы, удобной в практическом применении, оказался 1 килограмм (кг).

Данный видеоурок посвящен теме « Удельная теплоемкость ». Здесь мы познакомимся с понятием удельной теплоемкости вещества : она различается для всех веществ и зависит от их химического и молекулярного состава. Рассмотрим место удельной теплоемкости в формуле для определения количества тепла и разбёрем несколько примеров на нахождение удельной теплоемкости. Дадим определение этого понятия , узнаем, какой буквой оно сказывается и в каких единицах измерения вычисляется. И познакомимся с таблицей удельной теплоемкости некоторых веществ.

Как мы уже говорили в прошлом уроке , такая величина , как количество теплоты зависит от массы тела , разницы температур и природы вещества этого тела. Вот именно род вещества будет характеризоваться такой величиной , как удельная теплоемкость тела. Рассмотрим то , как удельная теплоемкость характеризует вещество на примерах.

Когда речь идет об измерении значение удельной теплоемкости для конкретного вещества , то мы имеем право пользоваться уже измеренным приближенными значениями, которые собраны в специальной таблице удельных теплоемкость различных веществ. Пример такой таблицы вы можете увидеть на рисунке 1.

Удельная теплоемкость воды примерно в десять раз выше удельной теплоемкости железа, поэтому кастрюля нагреется десять раз быстрее воды в ней. Интересно , что удельная теплоемкость льда в два раза меньше теплоемкости воды. Поэтому лед будет нагреваться в два раза быстрее воды. Растопить лед проще , чем нагреть воду. Как ни странно звучит, но это факт.

При этом , при увеличении температуры , газ увеличивается в объеме , и нам надо ввести еще одно значение — постоянного или переменного объема, тоже повлияет на теплоемкость. Поэтому при расчетах количества теплоты для воздуха и других газов пользуются специальными графиками величин удельной теплоемкости газов в зависимости от различных факторов и условий.

Удельная теплоемкость также не зависит от формы тела, изготовленного из данного вещества. Стальной брусок и стальной лист, имеющих одинаковую массу, потребуют одинаковое количество теплоты для нагревания их на одинаковое количество градусов. Другое дело, что при этом следует пренебречь обменом теплом с окружающей средой. В листа поверхность больше, чем в бруска, а значит, письмо отдает тепла, и поэтому скорее будет остывать. Но в идеальных условиях (когда можно пренебречь потерей тепла) форма тела не играет роли. Поэтому говорят, что удельная теплоемкость — это характеристика вещества, но не тела.

Б) алюминиевый калориметр массой 140 г налили 250 г воды при температуре 15 ° С. После того как брусок из свинца массой 100 г , нагретый до 100 ° С, поместили в калориметр с водой , там установилась температура 16 ° С. Составьте уравнение теплового баланса и определите удельную теплоемкость свинца.

В зависимости от ряда факторов, например содержания воды и жира в продуктах, их теплоемкость и удельная теплоемкость бывает разной. В кулинарии знания о теплоемкости продуктов дают возможность использовать некоторые продукты для изоляции. Если теплоизолирующими продуктами накрыть другую пищу, то они помогут этой пищи под ними дольше сохранить тепло. Если в блюд под этими теплоизолирующими продуктами высокая теплоемкость, то они и так медленно отдают тепло в окружающую среду. После того, как они хорошо прогреются, они теряют тепло и воду еще медленнее благодаря изолирующим продуктам сверху. Поэтому они дольше остаются горячими.

Читать еще:  Из какой стали делают болты

С другой стороны , у воды очень высокая удельная теплоемкость , даже по сравнению с другими жидкостями , поэтому нужно гораздо больше энергии , чтобы нагреть одну единицу массы воды на один градус , по сравнению с веществами , удельная теплоемкость которых ниже. Вода обладает высокой теплоемкостью благодаря прочным связям между атомами водорода в молекуле воды.

Вода — один из главных составляющих всех живых организмов и растений на Земле , поэтому ее удельная теплоемкость играет большую роль для жизни на нашей планете. Благодаря высокой удельной теплоемкости воды , температура воды в растениях и температура полостной жидкости в организме животных мало меняется даже в очень холодные или очень жаркие дни.

Высокая теплоемкость воды также означает, что вода не только медленно нагревается, но и медленно остывает. Благодаря этому свойству воду часто используют в качестве хладагента, то есть, как охлаждающую жидкость. К тому же, использовать воду выгодно благодаря ее низкой цене. В странах с холодным климатом горячая вода циркулирует в трубах для обогрева. В смеси с этиленгликолем ее используют в радиаторах автомобилей для охлаждения двигателя. Такие жидкости называют антифризом. Теплоемкость этиленгликоля ниже, чем теплоемкость воды, поэтому теплоемкость такой смеси тоже ниже, а значит эффективность системы охлаждения с антифризом также ниже, чем системы с водой. Но с этим приходится мириться, поскольку этиленгликоль не дает воде замерзнуть зимой и повредить каналы системы охлаждения автомобиля. В охлаждающие жидкости, предназначенные для более холодного климата, добавляют больше этиленгликоля.

Удельная теплоемкость стали — количество тепла, затрачиваемое на нагрев одного килограмма стали на один градус (по шкале Цельсия или Кельвина). В твердом состоянии в обычной стали она в среднем составляет 460 Дж / (кг * К), в высоколегированной — 480 Дж / (кг * К). Значение влияет на количество топлива, которое потребуется на разогрев заготовки до заданной температуры. Так же, размер этой цифры говорит о вероятности образования трещин на металле. Более высокое значение теплоемкости высоколегированной стали по сравнению с нелегированной говорит о том, что она в большей степени подвержена образованию трещин, является боле тугоплавкого, имеет худшую свариваемость. Жаропрочные высоколегированные и коррозиестойкие марки подвергаются обработке хуже, чем низколегированные и низкоуглеродистые разновидности.

Сварные швы на стали 12Х18Н10Т заметно уступают основному металлу в пластичности, объясняется дендритных ликвацией углерода. Причиной пониженной ударной вязкости сварных швов является недостаточная стабильность аустенита при сверхнизких температурах. В условиях глубокого холода возможном распаде аустенита по схеме А — М или А — а + К «, где А — аустенит, М — мартенсит, а — вторичный феррит, К » — вторичные карбиды. Наличие небольшого количества первичного феррита в данном случае не имеет решающего значения. Об этом свидетельствуют результаты следующих опытов. Часть образцов подвергли закалке на воздухе после часового нагрева при 1080 °, С, благодаря чему была ликвидирована дендритная изоляция углерода, но сохранена ферритной составляющая. Ударная вязкость шва повысилась в 2 раза (данные ниже).

Удельная теплоемкость металлов

Удельная теплоемкость металлов.

Таблица удельной теплоемкости металлов:

Теплоёмкость – это количество теплоты, поглощаемой (выделяемой) всем телом в процессе нагревания (остывания) на 1 Кельвин.

Удельная теплоёмкость – физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин.

Удельная теплоемкость обозначается буквой c и измеряется в Дж/(кг·К).

где Q – количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),

m – масса нагреваемого (охлаждающегося) вещества,

ΔT – разность конечной и начальной температур вещества.

В таблице удельная теплоемкость металлов приведена при при температуре 0 °C. Для ртути удельная теплоемкость приведена при 25 °C, для таллия – при 50 °C.

Необходимо иметь в виду, что на значение удельной теплоёмкости вещества влияет температура вещества и другие термодинамические параметры (объем, давление и пр.), а также то, каким образом происходило изменение этих термодинамических параметров (например, при постоянном давлении или при постоянном объеме).

Точное значение удельной теплоемкости металлов в зависимости от термодинамических условий (температуры, объема, давления и пр.) необходимо смотреть в справочниках.

Источник: Бухмиров В.В., Ракутина Д.В., Солнышкова Ю.С. Справочные материалы для решения задач по курсу «Тепломассообмен» / ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина». – Иваново, 2009; https://ru.wikipedia.org

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Востребованные технологии

  • Программа искусственного интеллекта ЭЛИС (20 700)
  • Мотор-колесо Дуюнова (14 146)
  • Гидротаран – самодействующий энергонезависимый водяной насос (13 065)
  • Природный газ, свойства, химический состав, добыча и применение (10 928)
  • Метан, получение, свойства, химические реакции (9 653)
  • Пропилен (пропен), получение, свойства, химические реакции (8 054)
  • Звездная батарея на гетероэлектриках (7 436)
  • Вторая пятилетка 1933-1937 гг. (7 206)
  • Первая пятилетка 1928 – 1932 гг. (6 598)
  • Графен, его производство, свойства и применение (6 125)
  • Целлюлоза, свойства, получение и применение (6 067)
  • Бутан, получение, свойства, химические реакции (6 036)
  • Фуллерен, его производство, свойства и применение (5 987)
  • Каучук, свойства и характеристики, получение и применение (5 788)
  • Этан, получение, свойства, химические реакции (5 487)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]