Из какой стали делают болты

Класс прочности болтов и маркировка по ГОСТ 7798-70

Крепеж, представлен в ассортименте. Можно встретить изделия, которые предназначены для обыкновенного соединения деталей в сборочных единицах. А есть и такие, которые предназначены для повышения надежности узла, в котором они будут установлены. При выборе крепежа, необходимо учитывать класс прочности болтов и четко себе представлять с каким типом и размером нагрузки им придется столкнуться. Соответственно отталкиваясь от этого выбирать его типоразмер и группу прочности.

Cвойства крепежа

Метизы, выпускаемые различными предприятиями, отличаются друг от друга геометрическими параметрами, формой, материалом, предназначением. Кроме этого их можно различить по типу покрытия и ряду других. Кроме, названных свойств болты одного типа отличаются параметрами прочности.

Например, болт М16, может быть использован для крепления деталей забора или ограждения и такой же болт, может быть, использовать для сборки мостовой или крановой конструкции. Соответственно для первого варианта может быть использован болт с меньшими прочностными параметрами, чем для второго варианта применения. Болты, применяемые для сборки кранов и аналогичного оборудования называют крановыми. Они отличаются более высокой прочности и для их изготовления применяют особо прочные стали. В РФ действует ГОСТ 7817-70, который нормирует требования к крепежу, применяемого в особо ответственных конструкциях.

Метизы имеют несколько форм исполнения – болты, гайки, винты и пр. Каждое из указанных изделий применяют для решения определенных задач. Для их изготовления применяют различные стали и разные технологии. От этого зависит и та маркировка, которая будет нанесена на поверхность крепежа.

Класс прочности резьбового крепежа

Этот параметр нормируется в ГОСТ 1759.4-87 (ISO 898.1-78) в этом документе определены группы прочности и их количество. Предусмотрено 11 классов 3.6; 4.6; 5.6; 5.8; 6.6; 6.8; 8.8; 9.8; 10.9; 12.9.

Каждое из этих обозначений подлежит расшифровке. Для этого достаточно первую цифру перемножить на 100 и результатом станет предел прочности металла. То есть болт с номером 9.8 будет обладать пределом прочности в 900 Н/кв. мм. Если число после точки перемножить на 10, то результатом станет размер предела текучести. Он обозначает то напряжение, по достижении которого вступает в силу необратимый процесс пластической деформации.

Кстати, при выполнении расчетов болтовых соединений необходимо закладывать большой запас прочности от предела текучести. Как правило, его принимают в два или три раза больше от номинала.

Метизы, предел прочности которого равен или превышает 800 МПа, применяют для сооружения крановой техники, мостовых конструкций, на железной дороге. Такие болты называют высокопрочными и относят к группе 8.8, а гайки 8.0 и больше.

Особенности производства болтов высокой прочности

Класс определяют не только по марке стали, но и по методу, примененного для их производства. Так, болты высокого класса изготавливают на высадочных автоматах (холодных или горячих). Резьбу накатывают с применением специальной технологической оснастки. Затем их отправляют на термообработку. После нанесения покрытия, защищающие болты от коррозии и старения, они готовы к отправке потребителям.

Крепеж отправляют потребителю в ящиках определенного веса. В некоторых случаях на их поверхность наносят слой масла, который обеспечивает длительное хранение метизных изделий.

Оборудование, применяемое для производства болтов высокого класса, может выпускать от 100 до 200 изделий, в минуту. Для изготовления применяют проволочный прокат, полученный из низкоуглеродистой или легированной стали.

Стали для изготовления болтов

Для производства применяют несколько марок стали. Распространенными считают — 10КП, 20КП, 10, 20, 35, 20Г2Р, 65Г, 40Х. После выполнения термообработки, болты, получают заданные параметры, определенные в соответствующих нормативных актах. Термическую обработку осуществляют в электрических печах с применением защитной среды. Она препятствует исходу углерода из стали.

Болты высокой прочности могут быть произведены из разных марок и будут получены изделия, которые будут относиться к различным группам прочности. Варьируя разнообразные режимы термообработки, есть возможность получения изделий с разными параметрами прочности.

Как пример можно рассмотреть применение стали 35 для производства болтов, относящихся к разным группам прочности:

  • 6 — болты выполняют на станках токарно-фрезерной группы;
  • 6 и 6.8 — крепеж производят на высадочном прессовом оборудовании;
  • 8 — этот класс получат после прохождения термообработки.

Болты высокой прочности, включают в себя и специализированные метизы, нашедшие применения строго в определенных областях. Требования к продукции определяют в отраслевых документах.

Крепежные изделия, применяемые в авиастроении, производят на основании так называемых нормалей (отраслевых стандартов). Эти метизы отличает повышенная прочность, малый вес и точность. Применение этих болтов и гаек обеспечивает безопасность эксплуатации техники. Для их производства применяют стали, относящиеся к углеродистым или легированным. Готовые изделия покрывают усиленным слоем антикоррозийного покрытия.

Продукция, применяемая при возведении мостовых сооружений и их конструктивных элементов, нормируется ГОСТ Р 52644-2006.

Болты особой прочности, производят в разном исполнении. Различают несколько вариантов. Болты категории «У» допускается эксплуатировать работать при – 40 ºC. Изделие типа «ХЛ» эксплуатируются в диапазоне от – 40 до – 65ºC.

Для изготовления метизов с высокой прочностью, применяют следующие марки сплавов: 30Х3МФ, 30Х2АФ, 30Х2НМФА.

Типы проводимых испытаний

Для подтверждения качества продукции заводы производители проводят ряд испытаний. Перечень и методики испытаний определены в ГОСТ Р 52627-2006. Испытания могут быть осуществлены в заводской или любой другой лаборатории, прошедшей соответствующую аттестацию в центре Росстандарта. Ниже приведен краткий перечень тестов:

По результатам, проводимых испытаний будут определены свойства продукции, в частности – предел прочности, предел текучести и ряд других.

Маркировка болтов

Порядок обозначения продукции определен международной организацией по стандартизации – ISO. Все документы (ГОСТ, ТУ), разработанные в СССР и РФ, выполнены с учетом этой системы и полностью отвечают ее требованиям.

Обязательной маркировке подлежат все болты и винты с диаметром стержня выше 6 мм. Исключения составляют детали с некоторыми формами шлицов или головок. Ее наносят на головку продукции. Она может располагаться на торце или сбоку головки. Место расположение клейма и его содержание определено в ГОСТ Р 52644-2006. Оно должно нести в себе следующую информацию:

  1. Штамп завода производителя.
  2. Класс прочности данного изделия.
  3. Климатическое исполнение болта, оно наносится только на изделия, работающие в условиях ХЛ.
  4. Номер плавки стали, использованной для производства этого изделия.
  5. S – индекс обозначает, что размер головки увеличен.

На болтах, выполненных из нержавеющей стали должна быть указана марка стали. Индексы, наносимые на болт, могут выпуклыми или выдавленными. Размер шрифта определяет завод-изготовитель, руководствуясь требованиями ГОСТ.

Точность болтов

Другое важное свойство – это точность. Производители выпускают продукцию двух классов точности. Класс А – подразумевает то, что стержень встает в отверстие с минимальным зазором. Диаметр посадочного отверстия не может быть больше толщи болта на 0,3 мм. Такой точности довольно просто добиться в условиях производственного цеха, но практически невозможно на строительной площадке. Крепеж класса В и С могут быть установлены в посадочные отверстия больше стержня изделия на 2 – 3 мм.

Точность исполнения болтового соединения оказывает заметное влияние на его прочность и сопротивлению нагрузок. В частности, чем точнее выполнено посадочное отверстие, тем будет меньше воздействие нагрузок, возникающих перпендикулярно оси стержня.

Технические условия
на болты, винты, шпильки и гайки

КЛАССЫ ПРОЧНОСТИ БОЛТОВ, ВИНТОВ И ШПИЛЕК
( ГОСТ 1759.4-87, ИСО 898/1-78 )

Стандарт распространяется на болты, винты и шпильки из углеродистых нелегированных или легированных сталей с метрической резьбой по ГОСТ 24705-2004 диаметром от 1 до 48 мм.

В таблице значения твердости приведены только для гаек с крупным шагом резьбы. Минимальные значения твердости обязательны только для термообработанных гаек и гаек, которые не могут быть испытаны пробной нагрузкой. Для остальных гаек минимальное значение твердости приводится только для справок.

Для классов прочности 04, 4, 5, 6, 9 нижний предел твердости HRC не регламентируется, верхний — не более HRC 30.

Классы прочности гаек с номинальной высотой, равной или более 0,8d (эффективная длина резьбы равна или более 0,6d), обозначаются цифрой, указывающей наибольший класс прочности болтов, с которыми они могут сопрягаться в соединении, и соответствующей 1/100 номинального напряжения от пробной нагрузки в испытательной оправке.

Классы прочности гаек с номинальной высотой, равной или более 0,5d и менее 0,8d (эффективная длина резьбы равна или более 0,4d и менее 0,6d), обозначаются комбинацией двух цифр: вторая цифра соответствует 1/100 номинального напряжения от пробной нагрузки в закаленной испытательной оправке, а первая указывает на то. что нагрузочная способность соединения данной гайки с болтом ниже, чем с закаленной оправкой и ниже, чем у гаек с высотой, равной или более 0,8d.

ПРИМЕРЫ УСЛОВНЫХ ОБОЗНАЧЕНИЙ
КРЕПЕЖНЫХ ИЗДЕЛИЙ

Винт по ГОСТ 17473-80 класса точности А, исполнения 2, диаметром резьбы d = 12 мм с мелким шагом резьбы, с полем допуска резьбы 6е, длиной l = 60 мм, класса прочности 5,8, из спокойной стали, с цинковым покрытием толщиной 9 мкм, хроматированным:

Читать еще:  Твердость стали по Моосу

Винт А2М12 х 1,25-6е х б0.58.С.019 ГОСТ 17473-80

Гайка по ГОСТ 5916-70 исполнения 2, диаметром резьбы d = 12 мм, с мелким шагом резьбы, с левой резьбой, с полем допуска 6Н, класса прочности 05, из стали марка 40Х, с цинковым покрытием толщиной 6 мкм, хроматированным:

Гайка 2М12 х 1,25-LH-6H.05.40Х.016 ГОСТ 5916-70

Болт исполнения 1, диаметром резьбы d — 12 мм. с размером под ключ S = 18 мм, длиной l = 60 мм с крупным шагом резьбы, поле допуска 6g, класса прочности 5,8, без покрытия:

Болт M12-6g х 60.58 (S18) ГОСТ 7805-70

То же исполнение 3, с мелким шагом резьбы, поле допуска 6g, класса прочности 10,9, из стали 40Х, с покрытием 01 толщиной 6 мкм:

Болт ЗМ12 х 1,25 — 6g х 60.109.40Х.016 ГОСТ 7808-70

Примечания:
1. В условном обозначении не указываются: исполнение 1, крупный шаг резьбы, правая резьба, отсутствие покрытия, а также параметры, однозначно определяемые стандартами на продукцию, класс точности В, если стандартом на конкретное крепежное изделие предусматриваются два класса точности (А и В).
2. Если применяется покрытие, не предусмотренное стандартом, его обозначение указывается по ГОСТ 9306-85.

Рекомендуемая схема условного обозначения болтов, винтов, шпилек и гаек:

где,
1 — наименование изделия;
2 — класс точности;
3 — исполнение;
4 — номинальный диаметр резьбы;
5 — шаг резьбы;
6 — направление резьбы; LH — левая;
7 — поле допуска резьбы;
8 — длина изделия (кроме гаек);
9 — класс прочности или группа материала;
10 — указание и применении спокойной (С) или автоматной (А) стали;
11 — марка материала для изделий классов прочности 05; 8; 8.8 и выше, групп 21-26 и 31-35;
12 — вид и толщина (суммарная) покрытия;
13 — номер стандарта на продукцию.

С вводом в действие новых ГОСТов на крепеж, соответствующих стандартам ISO, появилась и новая форма условного обозначения.

Болт по ГОСТ Р ИСО 4014-2013:
Болт с шестигранной головкой ГОСТ Р ИСО 4014 — М12 x 120 — 12.9 — B5R

Гайка по ГОСТ Р ИСО 7042-2011:
Гайка шестигранная ГОСТ Р ИСО 7042 — М12 — 12

Винт по ГОСТ Р ИСО 12474-2012:
Винт с цилиндрической головкой и шестигранным углублением под ключ
ГОСТ Р ИСО 12474 — М12 x 1,25 x 20 — 12.9 — B7R

Такие ГОСТы имеют и соответствующие технические требования — ИСО.

ВИДЫ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ПОКРЫТИЙ
БОЛТОВ, ВИНТОВ, ШПИЛЕК И ГАЕК

( ГОСТ 1759.0-87 )

Болты, винты, шпильки и гайки изготовляют с одним из видов покрытий, указанных в таблице, или без покрытий. Допускается применять другие виды покрытий — по ГОСТ 9.303-84. Выбор толщины покрытий — по ГОСТ 9.303-84. Технические требования — по ГОСТ 9.301-86.

Основные отклонения резьбы должны назначаться по ГОСТ 16093-2004 в зависимости от требуемой толщины покрытия. Поля допусков резьбы указываются для изделий без покрытия. После нанесения покрытия требования к резьбе — в соответствии с ГОСТ 16093-2004.

Конструкция, размеры и шероховатость поверхности болтов, винтов, шпилек и гаек устанавливается в стандартах на продукцию. Допуски размеров, формы и расположения поверхностей болтов, винтов, шпилек и гаек — по ГОСТ 1759.1.

Рекомендуемые технологические процессы изготовления болтов, винтов и шпилек из нелегированных и легированных сталей и марки стали

Механические свойства болтов, винтов и шпилек из коррозионно-стойких, жаропрочных, жаростойких и теплоустойчивых сталей при нормальной температуре

Механические свойства гаек из коррозионно-стойких, жаропрочных, жаростойких и теплоустойчивых сталей при нормальной температуре

Механические свойства болтов, винтов и шпилек
из цветных сплавов при нормальной температуре

Гайки имеют соответствующие группы, только регламентируется напряжение от пробной нагрузки. Таблица в ГОСТ 1759.0-87.

МАРКИРОВКА

Болты с шестигранной головкой, винты с цилиндрической головкой и шестигранным углублением под ключ, шпильки и гайки шестигранные маркируются знаком класса прочности (или группы материала) и клеймом (товарным знаком) завода-изготовителя, а изделия с левой резьбой дополнительно знаком левой резьбы (стрелка).

Знак левой резьбы для болтов и гаек может заменяться надрезами на ребрах шестигранников.

Обязательной маркировке подлежат:
— болты с шестигранной головкой классов прочности 4.6. 5.6, 6.6, 8.8, 9.8, 10.9, 12.9;
— винты с цилиндрической головкой и шестигранным углублением под ключ и шпильки классов прочности 8.8, 9.8, 10.9, 12.9;
— гайки классов прочности 05, 8, 9, 10, 12.

Изделия, не указанные выше и неуказанных классов прочности, а также изделия, изготовленные методом резания, маркируют по соглашению между изготовителем и потребителем.

Знаки маркировки могут быть выпуклыми или углубленными.

При маркировке классов прочности допускается не ставить точку, разделяющую первое и второе число знака класса прочности.

При использовании для изделий класса прочности 10.9 низкоуглеродистых мартенситных сталей, знак класса прочности должен быть подчеркнут: 10.9 или 109.

Маркировке подлежат болты и винты с диаметром от 6 мм.

Маркировке подлежат шпильки с диаметром резьбы от 12 мм. Допускается маркироать шпильки с диаметром резьбы от 8 мм с применением заменительных знаков:

В ГОСТ 1759.0-87 в Приложении 2 приводятся минимальные разрушающие нагрузки для болтов, винтов и шпилек с крупным и мелким шагом резьбы в зависимости от диаметра и группы материала.

УТРАТИВШИЕ АКТУАЛЬНОСТЬ ГОСТы НА КРЕПЕЖ

ГОСТ 7798-70 — Болты с шестигранной головкой класса точности В. Конструкция и размеры
— утратил силу на территории РФ с 01.07.2014. По приказу № 318-ст от 05.05.2015 ГОСТ 7798-70 восстановлен на территории РФ только в отношении продукции, поставляемой по Государственному оборонному заказу;
— в части болтов с крупным шагом резьбы и резьбой не на всей длине стержня, пользоваться ГОСТ Р ИСО 4014-2013;
— в части болтов с крупным шагом резьбы и резьбой до головки, пользоваться ГОСТ Р ИСО 4017-2013;
— в части болтов с мелким шагом резьбы и резьбой до головки, пользоваться ГОСТ Р ИСО 8676-2013;
— в части болтов с мелким шагом резьбы и резьбой не на всей длине стержня, пользоваться ГОСТ Р ИСО 8765-2013.

ГОСТ 7805-70 — Болты с шестигранной головкой класса точности А
— утратил силу на территории РФ с 01.07.2014. По приказу № 316-ст от 05.05.2015 ГОСТ 7798-70 восстановлен на территории РФ только в отношении продукции, поставляемой по Государственному оборонному заказу;
— в части болтов с крупным шагом резьбы и резьбой не на всей длине стержня, пользоваться ГОСТ Р ИСО 4014-2013;
— в части болтов с крупным шагом резьбы и резьбой до головки, пользоваться ГОСТ Р ИСО 4017-2013;
— в части болтов с мелким шагом резьбы и резьбой до головки, пользоваться ГОСТ Р ИСО 8676-2013;
— в части болтов с мелким шагом резьбы и резьбой не на всей длине стержня, пользоваться ГОСТ Р ИСО 8765-2013.

ГОСТ 11738-84 — Винты с цилиндрической головкой и шестигранным углублением под ключ класса точности А.
— утратил силу на территории РФ с 01.07.2014. По приказу № 320-ст от 05.05.2015 ГОСТ 7798-70 восстановлен на территории РФ только в отношении продукции, поставляемой по Государственному оборонному заказу;
— в части винтов с крупным шагом резьбы, пользоваться ГОСТ Р ИСО 4762-2012;
— в части винтов с мелким шагом резьбы, пользоваться ГОСТ Р ИСО 12474-2012.

ГОСТ 15589-70 — Болты с шестигранной головкой класса точности С.
— утратил силу на территории РФ с 01.07.2014. По приказу № 317-ст от 05.05.2015 ГОСТ 7798-70 восстановлен на территории РФ только в отношении продукции, поставляемой по Государственному оборонному заказу;
— в части болтов с резьбой не на всей длине стержня, пользоваться ГОСТ Р ИСО 4016-2013;
— в части болтов с резьбой до головки, пользоваться ГОСТ Р ИСО 4018-2013.

ГОСТ 22353-77 — Болты высокопрочные класса точности В.
— утратил силу на территории РФ;
— пользоваться ГОСТ Р 52644-2006.

ГОСТ 22354-77 — Гайки высокопрочные класса точности В.
— утратил силу на территории РФ;
— пользоваться ГОСТ Р 52645-2006.

ГОСТ 22355-77 — Шайбы класса точности С к высокопрочным болтам.
— утратил силу на территории РФ;
— пользоваться ГОСТ 32484.5-2013.

ГОСТ 1759.0-87 — Болты, винты, шпильки и гайки. Технические условия
ГОСТ 1759.1-82 — Болты, винты, шпильки, гайки и шурупы. Допуски. Методы контроля размеров и отклонений формы и расположения поверхностей
ГОСТ 1759.2-82 — Болты, винты и шпильки. Дефекты поверхности и методы контроля
ГОСТ 1759.3-83 — Гайки. Дефекты поверхности и методы контроля
ГОСТ 1759.4-87 — Болты, винты и шпильки. Механические свойства и методы испытаний
ГОСТ 1759.5-87 — Гайки. Механические свойства и методы испытаний
ГОСТ Р ИСО 4014-2013 — Болты с шестигранной головкой. Классы точности А и В.
ГОСТ Р ИСО 4017-2013 — Винты с шестигранной головкой. Классы точности А и В.
ГОСТ Р ИСО 8676-2013 — Винты с шестигранной головкой с мелким шагом резьбы. Классы точности А и В.
ГОСТ Р ИСО 8765-2013 — Болты с шестигранной головкой с мелким шагом резьбы. Классы точности А и В.

Класс прочности и марки сталей — Болты. Винты. Шпильки

Классы прочности для болтов, винтов и шпилек обозначаются двумя числами, разделёнными между собой точкой.

3.6 4.6 4.8 5.6 5.8 6.6 6.8 8.8 9.8 10.9 12.9

Первая цифра маркировки класса прочности болта обозначает 0,01 часть номинального временного сопротивления — это предел прочности на растяжение — измеряется в МПа (мегапаскалях) или Н/мм² (ньютонах на миллиметр квадратный). Также первая цифра маркировки класса прочности обозначает ≈0,1 часть номинального временного сопротивления, если Вы измеряете предел прочности на растяжение в кгс/мм² (килограммах-силах на миллиметр квадратный).

Читать еще:  Как сделать давилку для винограда своими руками

Пример: Шпилька класса прочности 5.8: Определяем предел прочности на растяжение
5/0,01=500 МПа (или 500 Н/мм²; или ≈50 кгс/мм²)

Вторая цифра обозначает 0,1 часть отношения предела текучести (напряжения, при котором уже начинается пластическая деформация) к номинальному временному сопротивлению (пределу прочности на растяжение) — таким образом для шпильки класса прочности 10.9 второе число означает, что у шпильки, относящейся к этому классу, минимальный предел текучести будет равен 90% от значения предела прочности на растяжение, то есть будет равен: (10/0,01)×(9×0,1)=1000×0,9=900 МПа (или Н/мм²; или ≈90 кгс/мм²)

Пример: Шпилька класса прочности 5.8: Определяем предел текучести
500х0,8=400 МПа (или 400 Н/мм²; или ≈40 кгс/мм²)

Значение предела текучести — это максимально допустимая рабочая нагрузка болта, винта или шпильки, при превышении которой происходит невосстанавливаемая деформация. При расчётах нагрузки на болты, винты или шпильки используют 1/2 или 1/3 от предела текучести, то есть, с двукратным или трёхкратным запасом прочности соответственно.

Согласно существующим международным нормам, изготавливаемые из углеродистой стали болты, винты и шпильки с диаметром резьбы более М5, по возможности маркируются соответствующим классом прочности на головке или торце изделия.

Рекомендованные марки сталей
(в особых случаях также применяются и другие стали, когда их применение продиктовано дополнительными требованиями к крепежу)

Класс прочности 3.6 — марка стали Ст3кп Ст3сп Ст5кп Ст5сп
Класс прочности 4.6 марка стали Ст5кп Ст.10
Класс прочности 4.8 марка стали Ст.10 Ст.10кп
Класс прочности 5.6 марка стали Ст.35
Класс прочности 5.8 марка стали Ст.10 Ст.10кп Ст.20 Ст.20кп
Класс прочности 6.6 марка стали Ст.35 Ст.45
Класс прочности 6.8 марка стали Ст.20 Ст.20кп Ст.35
Класс прочности 8.8 марка стали Ст.35 Ст.35Х Ст.38ХА Ст.40Х Ст.45 Ст.20Г2Р
Класс прочности 9.8 марка стали Ст.35 Ст.35Х Ст.45 Ст.38ХА Ст.40Х Ст.30ХГСА Ст.35ХГСА Ст.20Г2Р
Класс прочности 10.9 марка стали Ст.35Х Ст.38ХА С.45 Ст.45Г Ст.40Г2 Ст.40Х Ст.40Х Селект Ст.30ХГСА Ст.35ХГСА
Класс прочности 12.9 марка стали Ст.30ХГСА Ст.35ХГСА Ст.40ХНМА

Прочность болтов из сталей, сплавов и пластмасс

Проточки в стержнях высокопрочных болтов за резьбовым участком и под головкой способствуют уменьшению концентрации напряжений в наиболее нагруженных частях болта.

Выбор материала для болтов и шпилек – нетривиальная задача, требующая комплексного подхода с учётом конкретных условий применения, уменьшения материалоёмкости и стоимости изготовления крепежных изделий.

Дата публикации: 16 апреля 2011

Автор: Дроздов М.В., ООО «Инженерный Союз»

Будь у меня сила воли побольше, я бы сумел пересилить её.
Станислав Ежи Лец

Конструктивные методы повышения прочности болтов

Чувствительность высокопрочных болтов к высоким концентрациям напряжений

Высокопрочные и сверхвысокопрочные болты необходимо устанавливать без перекоса под гайкой или под головкой. Болты из конструкционных высокопрочных сталей обладают высокой чувствительностью к концентрации напряжений , поэтому все переходы сечения следует проектировать с максимально возможными радиусами закругления, особенно в месте перехода от гладкой части к головке.

Болты следует изготовлять с проточками за резьбовым участком, а сверхвысокопрочные — и под головкой (рис. 1). Такие проточки способствуют уменьшению концентрации напряжений в наиболее нагруженных частях болта.

Рис. 1. Болт из высокопрочной стали, зависимость механических
характеристик болтов

Резьбу следует изготавливать с гарантированным минимальным радиусом впадины.

Производство крепежа из различных сплавов и сталей

Болты нержавеющие высокопрочные для динамически нагруженных соединений

Для производства крепежа используют также высокопрочные коррозионно-стойкие стали 07Х16Н6 и 1Х15Н4АМЗ-Ш, которые после закалки в воздухе с температуры растворения карбидов (1000. 1050°С) имеют в основном аустенитную структуру . Упрочнение достигается обработкой холодом , в процессе которой 80% аустенита превращается в мартенсит. Болты из таких сталей обладают высокими прочностью и коррозионной стойкостью. Как следует из анализа табл. 1, указанные стали по пластичности (относительному удлинению) и ударной вязкости значительно превосходят обычно применяемые для болтов конструкционные стали. Отметим, что сталь 07Х16Н6 сохраняет высокую ударную вязкость (ан = 80. 100 Дж/см 2 ) и пластичность (δ5 > 20 %) до температуры t = —196 °С, в то время как ударная вязкость высокопрочных конструкционных сталей, из которых изготовляют болты, не превышает 15. 20 Дж/см 2 . Благодаря указанным свойствам болты из сталей 07Х16Н6 и 1Х15Н4АМЗ-Ш применяют в динамически нагруженных соединениях.

Болты для нагружения в плоскости стыка

Болты из этих сталей можно также использовать в конструкциях, нагруженных в плоскости стыка. Минимальные значения сопротивления срезу составляют для них соответственно τв = 875 и 1000 МПа. Для сравнения отметим, что сопротивление срезу болтов из стали 30ХГСНА при σв = 1600. 1800 МПа равно 960 МПа.

Вследствие высоких пластичности и ударной вязкости болты из этих сталей нечувствительны к перекосу (до 8°) и концентрации напряжений. Благодаря этому отпадает необходимость проведения специальных конструктивных мероприятий, снижающих концентрацию напряжений (галтели и др.).

Болты из сталей 07Х16Н6 и 1Х15Н4АМЗ-Ш сохраняют высокую прочность до t = 500 °С (рис. 1). Сопротивление усталости болтов из этих материалов значительно выше, чем из конструкционных коррозионно-стойких сталей, применяемых обычно для изготовления высокопрочных болтов.

Для повышения прочности болты из сталей 07X16Н6 и 1Х15Н4АМЗ-Ш изготовляют по следующей технологии: изготовление заготовки с головкой, полная термическая обработка, накатка резьбы, отпуск при t = 400 °С.

Болты и шпильки из титановых и бериллиевых сплавов

Титановые и бериллиевые болты широко применяют в конструкциях, к которым предъявляют жесткие требования по массе, габаритам, прочности .

Болты и шпильки из титановых сплавов

Титановые сплавы с плотностью около 4,5 г/см 3 имеют высокие механические характеристики. В табл. 2 приведены отечественные марки титановых сплавов, применяемых для изготовления болтов.

Сплавы ВТЗ—1, ВТ5, ВТ9 и ВТ16 используют для изготовления болтов (шпилек) взамен сталей 30ХГСА, 30ХГНА, 38ХА и 40ХН2МА. Эти болты на 40% легче стальных. После термообработки на σв = 1100 МПа они обладают такими же свойствами при растяжении, как и болты из легированных сталей (табл. 3).

Прочность титановых болтов при срезе даже выше прочности стальных болтов.

Упругое удлинение титановых болтов при одних и тех же напряжениях приблизительно в 2 раза больше упругого удлинения стальных болтов, то важно для сохранения первоначальной затяжки. Кроме того, вследствие высокой податливости дополнительная нагрузка на болт при действии рабочих сил в случае применения титановых болтов взамен стальных в стальных узлах снижается также почти в 2 раза. Однако эти преимущества титановых болтов исчезают при их работе в титановых узлах.

Болты из титановых сплавов малочувствительны к перекосу опорных поверхностей при статических нагрузках и не обнаруживают склонности к замедленному хрупкому разрушению . Однако ввиду высокой чувствительности титановых сплавов к остаточным напряжениям растяжения шлифование резьбы болтов, работающих при переменных напряжениях, недопустимо.

Из сплава ВТ9 изготовляют болты, которые могут длительно работать при температуре до 550 °С. Сплав ВТ16 можно использовать длительно при температуре до 350 °С и кратковременно до 700 °С.

Титановые болты необходимы при работе в корродирующих средах, так как они обладают высокой коррозионной стойкостью в большинстве агрессивных сред. Разрушение болтов из этих сплавов при статических нагрузках носит взрывной характер и происходит практически без образования шейки.

Бериллиевый крепеж

Бериллиевые болты приблизительно в 4 раза легче стальных и в 2,2 раза легче титановых.

Предел прочности сплава бериллия с алюминием при нормальной температуре составляет σв = 520 . 580 МПа, модуль упругости Е = 175 ГПа, удлинение при разрыве δ5 = 20. 26 %.

Однако изделия из бериллиевых сплавов очень чувствительны к концентрации напряжений и качеству поверхности , поэтому бериллиевые болты требуют тщательной обработки , выполнения резьбы накаткой , использования алюминиевых гаек и т. д. Применение для таких болтов резьбы с пониженной высотой профиля (до 55 % нормальной) с соответствующим увеличением внутреннего диаметра и радиуса впадины ( R =0,28 Р ) уменьшает концентрацию напряжений и повышает предел выносливости более чем в 2 раза.

По прочности бериллиевые болты уступают стальным и титановым. Однако удельная прочность (отношение прочности к массе) болтов из бериллия в 1,5. 2,0 раза выше прочности стальных к титановых болтов при статических нагрузках, а при переменных нагрузках их долговечность в 2 раза больше титановых и почти в 10 раз больше стальных. Необходимо иметь в виду, что бериллиевая пыль, образующаяся при механической обработке, токсична .

Крепежные детали из пластмасс

Крепежные детали из пластмасс широко применяют благодаря высоким электро- и теплоизоляционным, а также противокоррозионным свойствам .

Основные материалы для изготовления крепежных деталей –

  • волокнит,
  • фенопласты К-18-2 и К-21-22,
  • пресс-материал АГ-4В,
  • найлон
  • полиамиды.

Класс прочности болтов по ГОСТ

В продаже можно встретить самые различные крепежные элементы, которые могут применяться для соединения нескольких изделий в одну конструкцию. Наиболее распространенным предложением можно назвать болты. Они применяются на протяжении последних нескольких десятилетий. Различные виды болтов характеризуются различными геометрическими параметрами и эксплуатационными качествами. К примеру, класс прочности болтов может варьироваться в достаточно большом диапазоне. Рассмотрим подробнее характеристики болтов, которые определяют область применения получаемых механизмов и его срок службы.

Читать еще:  Как удлинить сверло по металлу своими руками

Класс прочности резьбового крепежа

Класс прочности гаек определяет его механическими свойствами. Для классификации изделия по этому параметру применяется ГОСТ 1759 4-67. Согласно нормативной документации класс прочности делится на 11 категорий.

Скачать ГОСТ 1759.4-87 Болты, винты и шпильки. Механические свойства и методы испытаний»

Применяемое обозначение винтов имеет следующие особенности:

  1. Расшифровать класс прочности 10 или 9 достаточно просто. Применяемые правила маркировки позволяют упростить поставленную задачу по выбору подходящих крепежных элементов.
  2. Определить класс прочности шайб или других крепежных материалов можно при рассмотрении нормативной документации. Первая цифра обозначения умножается на 100, за счет чего получается показатель прочности на растяжение и на разрыв. Предел прочности определяет то, насколько прочным является применяемое крепежное изделие.
  3. В маркировке есть и второе число, которое может применяться при расчете основных показателей. К примеру, класс точности 8.8 говорит о том, что второй показатель соответствует соотношение предела текучести к временному сопротивлению. В данном случае показатель составляет 80%.

При изготовлении крепежного материала из нержавеющей стали или других материалов следует учитывать следующие моменты:

  1. Предел текучести – значение нагрузки, при которой материал после деформации не подлежит восстановлению. При расчете нагрузки, которая оказывает воздействие на резьбу, учитывается тот момент, что должен быть трехкратный запас прочности.
  2. Таблица прочности болтов применяется для выбора наиболее подходящего крепежного материала.

Разрушающие нагрузки для болтов

Применяемые болты по ГОСТУ с сопротивлением 800 МПа и больше могут выдерживать существенную нагрузку. Именно поэтому они получили широкое распространение при строительстве мостов или других ответственных конструкций.

Нюансы выбора крепежа

К выбору крепежа следует относиться с большой ответственностью. Это связано с тем, что показатель их прочности может существенно отличаться. Подбор проводится с учетом того, какая марка стали болтов обладает более подходящими эксплуатационными качествами. К ключевым моментам отнесем следующую информацию:

  1. Тип применяемого материала при изготовлении.
  2. Класс точности.
  3. Применяемые методы термической и химической обработки.

Высокопрочные болты могут изготавливаться из различных металлов. Ключевыми моментами назовем:

  1. В большинстве случаев применяются следующие металлы: 10КП, 20КП, сталь 10, сталь 20, 20Г2Р, 40Х. Эти металлы соответствуют всем установленным требованиям по физико-механическим качествам.
  2. Для повышения эксплуатационных качеств может проводится термическая обработка. Для выполнения подобной операции применяются специальные электрические печи. За счет создания специальной защитной среды обеспечиваются требуемые эксплуатационные качества.
  3. Углеродистые стали получили самое широкое распространение. Это связано с их относительно невысокой стоимостью, а также высокими эксплуатационными качествами.

Диаметр болтов также является важным критерием выбора. Диаметральные размеры могут варьироваться в достаточно большом диапазоне. С увеличением показателя площади поперечного сечения повышается прочностью и надежность соединения. Длина болтов считается важнейшим геометрическим показателем, который нужно учитывать.
Применяемые материалы могут иметь самые различные характеристики К примеру, уделяется внимание тому, какова твердость болтов.

Слишком низкий показатель может стать причиной деформации резьбовой поверхности при возникновении продольной нагрузки.

Перед выбором наиболее подходящего крепежного элемента нужно учитывать особенности соединения деталей при применении этого крепежного материала:

  1. Проведенные исследования указывают на то, что при правильном выборе класса прочности и момента затяжки можно обеспечить наиболее качественное соединение. Кроме этого, обеспечивается защита от самопроизвольного откручивания и длительный срок службы изделия.
  2. Качественный крепеж выдерживает поперечные и осевые нагрузки. При изготовлении крепежа применяются специальные металлы и сплавы, которые хорошо противодействуют нагрузкам, воздействующим в любом направлении.
  3. Существенно упрощается процесс монтажа и демонтажа. Стоит учитывать, что некоторые металлы могут окисляться, и через некоторое время пройти демонтаж конструкции будет сложно. Однако, упростить задачу можно при применении специального вещества.
  4. Есть возможность получить разъемные соединения. Очень часто можно встретить ситуацию, когда для выполнения различных работ требуется провести разбор конструкции. Для проведения демонтажных работ требуются простые инструменты, на выполнение работы, как правило, уходит немного времени.
  5. Существенно снижается стоимость получаемого изделия. Сварочное соединение обходится дорого, так как предусматривает использование специального сварочного аппарата.

Качество соединений можно существенно повысить при применении дополнительных различных элементов. К примеру, используются шайбы и контргайки, которые существенно повышают качество и надежность соединения.
Однако, у резьбовых соединений есть и несколько существенных недостатков:

  1. Концентрация напряжения в месте впадины профиля резьбы. Стоит учитывать, что применение специального металла позволяет существенно повысить надежность резьбовой поверхности.
  2. Есть вероятность того, что гайка открутится при сильном механическом воздействии. Конечно, для исключения подобной вероятности могут применяться различные методы фиксации.

Кроме этого, выделяют несколько видов резьбового крепления. Примером можно назвать болтовое и винтовое соединение. Некоторые соединения могут проводиться при помощи шпилек. Выбор более подходящего крепежного элемента проводится с учетом того, какими качествами должно обладать изделие.

Маркировка болтов

Маркировка болтов может проводиться при применении разработанных стандартов ISO. Система маркировки подразумевает применение специальных таблиц. Кроме этого, все стандарты, применяемые на территории России, были разработаны несколько десятилетий назад. Класс прочности считается наиболее важным показателем, который учитывается при производстве практически всех крепежных элементов.
Рассматривая обозначение болтов, следует уделить внимание нижеприведенным моментам:

  1. Обязательная маркировка проводится при изготовлении винтов, диаметр которых составляет более 6 мм. Наносится маркировка прочности болтов и других показателей на изделия меньшего диаметра только по желанию производителя.
  2. Сортамент применяемых крепежных изделий с крестообразными или прямыми шлицами не предусматривает маркировку. Изделия, имеющие шестигранные шлицы, маркируются обязательно.
  3. Обязательной маркировке не подлежат не штампованные варианты исполнения, которые изготавливаются путем точения и резания. Маркировка наносится только в том случае, если этого требует заказчик. При этом расшифровка может проводится по-разному, стандарты применяются не во всех случаях.

Рассматривая части болта, на которые наносится разметка, следует уделить внимание торцевой и боковой поверхности. Если применяется боковая поверхности, то обозначения наносятся углубленными знаками.

Классификация болтов

Существуют самые различные типы болтов. Выбор проводится в зависимости от того, какими эксплуатационными качествами должен обладать создаваемое изделие. Классификация болтов может проводится по нескольким критериям:

  1. Классу прочности. Если рассматривать наиболее распространенные таблицы, то основным критерием становится класс прочности. Он определяет возможность применения изделия в тех или иных случаях. Специальные болты могут обладать высокой прочностью, применяться при сооружении мостов или создании других ответственных конструкций. Класс прочности крепежа указывается практически всеми производителями. Это связано с тем, что класс прочности определяет возможность применения изделий в тех или иных условиях.
  2. Классификация по размеру важна. Это связано с тем, что с увеличением площади поперечного сечения повышается сопротивление скручиванию. Однако, для больших крепежей требуются отверстия с большим диаметром. Что касается длины стержня, то он выбирается в зависимости от толщины соединяемых элементов и требуемой длины резьбового соединения.
  3. Существуют различные виды головок. Примером можно назвать изделие с шестигранной головкой или в виде восьмигранника. Стоит учитывать, что этот показатель лишь определяет то, какой инструмент подходит больше всего для работы.

Могут применяться и другие показатели для классификации крепежей. К примеру, в некоторых случаях уделяется больше всего внимания твердости поверхности. Однако, выбор зачастую проводится при учете класса точности. Именно поэтому классификация проводится по классу точности, которая указывается в нормативной документации и при проектировании.

Болты высокой прочности

В большинстве случаев применяются обычные соединительные элементы, при изготовлении которых применяется углеродистая сталь. Однако, при необходимости можно приобрести высокопрочные болты, которые могут применяться при создании высокопрочных соединений. Маркировка высокопрочных болтов проводится по общим стандартам.
Изготовление болтов высокой прочности проводится с учетом нижеприведенной информации:

  1. При изготовлении применяются специальные сплавы, которые характеризуются высокой прочностью и твердостью. Они обходятся дороже, чем углеродистая сталь, но все же применение получаемых изделий целесообразно в самых различных случаях.
  2. Для повышения прочности и твердости проводится термическая обработка. Она предусматривает изменение химического состава металла и структуры получаемого материала.

Болты высокой прочности

На высокопрочные болты может составляться собственная нормативная документация. Кроме этого, классификация проводится следующим образом:

  1. Крепежи с буквой «У» в маркировке применяются для эксплуатации при температурах ниже -40 градусов Цельсия. Однако, рассматриваемая буква указывается не во всех случаях маркировки.
  2. Предложение с исполнением ХЛ могут эксплуатироваться в более жестких эксплуатационных условиях, к примеру, при температуре от -40 до -65 градусов Цельсия. При маркировке в этом случае указывается класс точности.

Болты и гайки высокопрочные сегодня встречаются довольно часто. Это связано с высокими эксплуатационными качествами, которые позволяют расширить область применения изделия.

Точность болтов

Еще одним важным показателем можно назвать класс точности болтов. Это связано с тем, что при изготовлении могут применяться самые различные методы нарезания резьбы и обработки цилиндрической поверхности. Рассматривая показатель точности отметим нижеприведенные моменты:

  1. С повышение точности получаемое резьбовое соединение служит намного дольше.
  2. Предложение обладает более точной геометрической формой.
  3. Между крепежным изделием и образованным отверстием нет пространства, которое может стать причиной расшатанности соединения.

С повышением показателя точности также возрастает стоимость крепежа.

Именно поэтому крепежные материалы, применяемые при изготовлении не ответственных механизмов, обладают средним показателем точности. Применение современного оборудования при точении позволяет получить крепежи с высоким показателем точности.
В заключение отметим, что производством рассматриваемых материалов занимаются различные компании. Во многом качество получаемого изделия зависит от применяемого оборудования и технологии производства. Некоторые производители могут снизить качество крепежа для того, чтобы уменьшить его стоимость.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]