Содержание
- Дюраль: технология производства и применения
- Общие сведения
- Основные виды дюралевых сплавов и их свойства
- Температура плавления и плотность
- Технология производства и применение дюраля
- Отличие дюраля от алюминия
- Цена дюрали за 1кг
- Дюралюминий — состав сплава, свойства и его виды
- Немного истории
- Основные виды сплавов
- Использование дюралюминия
- Нормативная база
- Немного экономики
- Дюралюминий — это. Дюралюминий: состав, свойства, цена
- Случайное открытие
- Основные виды сплавов
- Применение
- Преимущества и недостатки
- Дюралюминий: состав, свойства и применение
- Дюралюминий: особенности
Температура плавления дюралюминия
Дюраль: технология производства и применения
Дюраль — это прочный и легкий сплав алюминия, разработанный в 1910 году немецким металлургом Альфредом Вильмом. Он относительно мягкий, пластичный и легко обрабатывается при нормальной температуре. Сплав можно прокатывать, ковать и прессовать в различные формы и изделия. Предел прочности дюралюминия выше, чем у алюминия, хотя его устойчивость к коррозии низкая. Электрическая и теплопроводность дюрали меньше, чем у чистого алюминия, и больше, чем у стали. Первоначально он использовался в жестких рамах дирижабля, и его методы и состав термической обработки были в то время военным секретом. С внедрением новых методов строительства монококов в начале 1930-х годов дюраль широко использовался в авиационной промышленности.
Общие сведения
Дюраль — это сплав, торговое название, данное самому раннему варианту упрочняемого алюминия. Он, состоит из 90% алюминия, 4% меди, 1% магния и от 0,5% до 1% марганца. Поскольку он очень твердый его используются в местах, где требуются особенные защитные свойства, например, в броне транспортного средства, в оборонной промышленности. Дюраль — имеет предел текучести 450 МПа, и есть некоторые другие вариации, которые зависят от состава, типа и характера сплава. Он становится прочным, после термической обработке и может быть отпущен, заклепан, приварен или подвержен другому типу обработки. Он устойчивым против коррозии, может нести тяжелые нагрузки, при этом является пластичным.
Это ковкий металл, который легко поддается формовке, очень хороший проводник тепла и электричества. Когда медь добавляется в сплав, ее прочность увеличивается, но в то же время она также становится более подверженной коррозии. Для листовых изделий из дюралюминия металлургическое соединение высокочистого металлического слоя повышает коррозионную стойкость. Эти листы обычно используются в авиационной промышленности.
Основные виды дюралевых сплавов и их свойства
Классификация дюралевых сплавов, список типичных областей применения деформируемых сплавов Al-Cu 2000 серия по ГОСТ и ISO:
- АК8/2014: Поковки, плиты и экструзии для тяжелых условий эксплуатации для авиационной арматуры, колес и основных конструктивных элементов, резервуара и конструкции космического усилителя, рамы грузового автомобиля и компонентов подвески. Применения, требующие высокой прочности и твердости, включая обслуживание при повышенных температурах.
- Д16/2024: Авиационные конструкции, заклепки, скобяные изделия, колеса для грузовых автомобилей, изделия для винтовых машин и другие различные конструктивные применения. Первый когда-либо обнаруженный закаленный сплав.
- 1201/2219: Сварные космические ускорители окислителя и топливные баки, сверхзвуковая обшивка самолета и элементы конструкции. Сварка дюрали выполняется легко, сплав полезен для применения в температурном диапазоне от -270 до 300 C (от -450 до 600 F). Обладает высокой вязкостью разрушения, а закалка Т8 обладает высокой устойчивостью к коррозионному растрескиванию под напряжением.
- АК4 1/2618: штамповка и ручная ковка. Поршни и вращающиеся детали авиационных двигателей для работы при повышенных температурах. Пресс-формы для шин. Высокая статическая прочность сплава, что определяет его стойкость при разовых нагрузках, в связи, с чем его используют при выпуске ответственных узлов. Проведенные испытания доказали, что разрушить подобные изделия довольно сложно.
Дюраль АК8/2014
Температура плавления и плотность
Дюраль относится к алюминиевым сплавам группы AlCuMg материал с номерами от 2000 до 2999 по ISO и в основном используется для холодной закалки. Он не очень устойчив к коррозии, только частично анодируется и сваривается.
Плотность дюралюминия находится в пределах 2500.0—2800.0 кг/м3, а температура при которой он плавится 655.0 C.
Как правило, характеристики дюралюминия — мягкий, пластичный и пригодный для обработки, когда он находится в нормальном состоянии. Его можно легко свернуть, сложить или подделать. Он также может быть вылит в различных формах и кузницах.
Сегодня сплавы AlCuMg — реализуются с общим названием дюралюмины по ГОСТу: Д1, В65, Д16, В17, Д18, Д19, 1201, ВАД1, АК4 1 и другие.
Технология производства и применение дюраля
Дюраль можно легко выковать, отлить и обработать в связи с его низкой температурой плавления. Он отжигается при температуре от 350 до 380 C, с последующим охлаждением воздухом. После этого сплав становится пластичным и может быть легко обработан и сформирован в желаемых формах. Затем сплав подвергают термической обработке при температуре от 490 до 510 C для улучшения его свойств растяжения. После этого дюраль гасится и затвердевает.
Дюраль имеет следующие области применения:
- Для изготовления проволоки, прутка и стержней, в местах, где требуется хорошая прочность и обрабатываемость.
- В тяжелых поковках, колесах, плитах, авиационной арматуре, резервуаре космического усилителя и в компонентах подвески, то есть в местах, где требуется высокая прочность, в рабочих зонах при повышенных температурах.
- Для изготовления конструкций самолетов, колес грузовых автомобилей, изделий винтовых станков, заклепок и других конструкционных изделий.
- В качестве листов для панелей кузова.
- В поковках, в поршнях авиационного двигателя, рабочих колесах реактивных двигателей и кольцах компрессора.
- Для изготовления штамповок и листовой продукции.
Дюраль используется для производства самолетов
Метод, который используется для превращения дюралюминия в слитки:
- Сплав подвергается высокому давлению, прежде чем превратится в слитки.
- Процесс включает в себя прокатку, прессование и другие обязательные этапы.
- Затем он преобразуется в пластины, листы, трубы и провода и гасится в воде в течение примерно четырех дней, этот процесс называется естественным старением.
- Иногда он подвергается искусственному старению при температуре около 190 Свтечение нескольких часов.
Отличие дюраля от алюминия
Металлы очень похожи между собой, перед тем как отличить их, нужно ознакомиться с их свойствам. Алюминий — серебристый металл, легкий, относительно мягкий, плавится при температуре – 660.4 C. Он хорошо растворим в сильных щелочах, устойчив к кислоте, поскольку на его поверхности образуется защитная пленка. Алюминий характеризуется высокой теплопроводностью и электрической проводимостью. Этот металл очень пластичный, что позволяет свернуть его в очень тонкую фольгу. Он также имеет низкую прочность: чистый алюминий легко режется ножом. Этот металл очень устойчив к коррозии — на поверхности Al образуется самая тонкая пленка, которая защищает его от повреждений.
В сплавах дюралюминия основным легирующим элементом является Cu, иногда также добавляется Mg. Характеристики этой серии: хорошее соотношение твердости и веса и низкая коррозионная стойкость. Что касается первой характеристики, она демонстрирует механические свойства, которые на порядок и выше, чем у низкоуглеродистых сталей. Чаще всего этот сплав используется в местах, где необходимо высокое отношение твердости к массе при температуре выше 150 oC.
Марганец, добавленный в алюминий, повышает его прочность и дает металл с превосходной обрабатываемостью и коррозионной стойкостью.
Цена дюрали за 1кг
Свойства дюрали позволяет выпускать из этого сплава заготовки любых конфигураций. Так, шестигранники по ГОСТ 21488/97 стоят в районе 100-160 руб. за килограмм. Круглая арматура до 230 руб. за кг. Дюраль цена за кг в основном зависит от марки сплава и сечения изделий. Листовая дюраль толщиной 0.5 мм стоит 300 руб. за кг. Дюралевые трубы имеют цену 130 руб. за кг в Москве.
Ожидается, что рынок алюминия столкнется с дефицитом к 2022 году. Российский алюминиевый гигант Объединённая компания «РУСАЛ» имеющий порядка 5.6% мирового производства снижает экспорт из-за санкционной политики запада. Сегодня американские покупатели алюминия вынуждены защищать российскую компанию, справедливо опасаясь резкого роста цен на данную продукцию. Таким образом сколько стоит дюраль, будет в будущем, будет зависеть исключительно от действий западных стран.
Круглая арматура дюрали стоит до 230 руб. за кг
В целях борьбы с санкциями против Rusal Plc профильное министерство запустило в 2018 году нескольких проектов, способствующих росту внутреннего потреблению алюминия. В результате в России оно выросло сразу на 7.6% в 2018 году по сравнению с прошлым периодом, а меди увеличилось на 1.8% за тот же период. В 2018 году из России было импортировано свыше 200 000 тонн алюминиевой продукции на сумму порядка 730 млн. долларов США.
Дюралюминий — состав сплава, свойства и его виды
В промышленности применяют множество конструкционных материалов и один из них дюралюминий. По сути — это собирательное название сплавов, изготовленных на базе алюминия и состава легирующих компонентов. Сплав получил своё название от слова Dural. Именно таково было название одного из первых сплавов, который подвергался термической обработке.
Немного истории
Дюралюминий разработан немецким ученым Вильмом в 1903-ем. Металлург попросту смешал алюминий, медь, кремний. С этого момента до начала серийного производства прошло всего 6 лет. В 1911 году дюралюминий стали применять строительства воздушных судов, в частности, дирижаблей и тяжелых бомбардировщиках. Малый вес конструкций при сопоставимой с прочностью стали позволил уменьшить массу летательных аппаратов в 2 — 3 раза. Это привело к резкому развитию авиационной промышленности.
Основные свойства этих сплавов
В базовый состав сплава входят следующие вещества:
- медь — до 0,5%;
- марганец до 0,5%;
- магний до 1,2%;
- кремний и многие другие.
Изменяя пропорции используемых веществ можно изменять и свойства дюралюминия.
Прочность дюралюминия достигает — до 500 МПа под действием временных нагрузок и 250 — 300 при стандартных нагружениях, (прочность чистого алюминия — 70-80 МПа). Этот параметр сделал дюрали материалом, используемым во многих областях промышленности в том числе и высокотехнологичных. Сплав алюминия с некоторыми элементами, в определенных пропорциях, изменяет полученного сплава.
Благодаря компонентам, применяемым в производстве дюралюминия он приобретает ниже приведенные свойства:
- прочность, которая сопоставима с определёнными марками стали;
- высокая стойкость к температурному воздействия. материал начинает плавиться при температуре 650 ºC.
- повышенная электропроводность. это происходит из-за наличия меди.
- дюраль хорошо переносит прокат как по горячей, так и по холодной технологии.
Высокие технологические свойства дюралюминия, привели к высокому спросу на него. В мире производят порядка 60 000 тысяч тонн, из которого почти половину (свыше 30 000 тысяч тонн) изготавливают на территории КНР. Россия занимает второе место об объёмам производства, металлургические заводы получают 3 580 тыс. тонн.
Особенности производства
Производства дюраля, как и большинства сплавов, сопряжено с рядом сложностей. Получение дюраля происходит последовательно. На первом этапе получают технический алюминий и только потом в него начинают вносить добавки, формирующие его свойства. На втором этапе, получений первичный дюраль проходит через термический отжиг, производимый при 500 ºC. Такой режим обработки обеспечивает гибкость и мягкость металла. Для повышения прочности дюраль проходит через операцию старения.
Отечественная и иностранная промышленность освоила выпуск следующих видов проката:
- листы и полосы разного типоразмера ГОСТ 21631-76;
- прутки круглые и многогранные по ГОСТ 21488-97;
- трубы разного диаметра и разной толщиной стенок ГОСТ 18475-82 и ГОСТ 18482-79;
- профили различной формы сечения.
Основные виды сплавов
Существует несколько видов сплавов, отличающихся своими характеристиками.
1. Алюминий + марганец или магний. Такой сплав называют «магналии». Материал отличает высокая стойкость к коррозии, хорошая сварка и пайка. Между тем — материал плохо поддаётся обработке на металлорежущем оборудовании. Кроме того при работе со сплавом магнолии никогда не используют промежуточную закалку.
Магнолии применяют для бензопроводных систем, радиаторов для автомобилей, ёмкостей различного назначения.
2. Сплав, состоящий из алюминия, магния и кремния, получил название — «авиаль». Сплав обладает такими свойствами как:
- Высокая стойкость к воздействию коррозии;
- Высокая прочность сварных и паянных швов.
Для получения данных технологических свойств авиаль проходит термообработку. Ее проводят при температуре, почти в 520 ºC. Последующее резкое охлаждение необходимо выполнить в воде, температура которой составляет 20 ºC.
После проведения такой обработки авиаль можно использовать для работы в условиях повышенной влажности, его широко применяют в самолетостроении. В последние годы, авиаль используют для замены стальных деталей из носимым устройств связи, например сотовых аппаратов и пр.
3. Еще один сплав — дюралюмин. В него, кроме алюминия входят медь и марганец. Пропорции компонентов изменяют, тем самым модифицируя качественные свойства сплава. Но несмотря ни на что, дюралюмин обладает не высокой стойкостью к коррозии. Поэтому на поверхность наносят слой чистого алюминия. Такая операция называется плакированием и с успехом предотвращает воздействие коррозии.
Дюралюмин применяют в транспортном машиностроении, в частности, детали из этого материала установлены в скоростном поезде «САПСАН».
Использование дюралюминия
Это семейство сплавов, по сути, базовый материал, применяемый в строительстве авиационной и космической техники. Это его использования началось в начале ХХ века при сооружении первых дирижаблей.
В наши дни на практике используется больше десяти марок этого сплава. При сооружении авиационной техники чаще используют материал под названием Д16т. В его состав состоит из девяти веществ — никель, титан, в качестве легирующих составляющих применяют медь, кремний и пр. Но при всем. Доля алюминия остаётся неизменной — 93%.
При выборе материала для деталей и узлов технолог должен помнить, что далеко не все дюрали хорошо свариваются или паяются. В таком случае для сборки деталей из него применяют заклепки. Такие операции широко распространения при сборке фюзеляжей и плоскостей при строительстве самолетов, водного транспорта всех типов. Так, небольшая лодка, применяемая для своих целей, может прослужить ее хозяину на 20 лет больше.
С другой стороны, некоторые марки дюралюминия хорошо свариваются при использовании аппаратов аргонной сварки.
Кстати, еще в ХХ веке велись опытные работы по использованию дюралей в автомобильной отрасли. Из него изготавливают кузова автобусов, некоторых марок легковых и спортивных автомобилей. Само собой дюрали применяют и в силовых узлах.
Некоторые марки этого сплава применяют для производства труб, которые устанавливают на судах, авиационной технике, автомобилях.
Свойства дюраля позволили его использовать и в пищевой промышленности, например, из дюралевой фольги производят фантики для конфет и шоколада.
Нельзя забывать и том, что многие домохозяйки применяют кухонную утварь, выполненную из этого материала.
Низкий вес дюраля позволяет его применение при выполнении буровых работ. Все дело в том, дюралюминий в 3 — 4 раза легче стали. Кроме этого трубы из дюралюминия проще переносят вибрацию, которая неизменно возникает при выполнении буровых работ.
Отдельного разговора требует применения дюраля в строительной отрасли. Его применяют для производства облицовочных материалов, различных ограждающих конструкций и пр.
Нормативная база
В нашей стране существует несколько ГОСТ, которые нормируют требования к алюминию и его сплавов. Один из них — это ГОСТ 4784-97 Алюминий и сплавы алюминиевые деформируемые. Марки (с Изменениями N 1, 2, 3, с Поправками). Он распространяется на алюминий и сплавы из него, которые предназначены для получения полуфабрикатов различного типа и форм.
В частности, ГОСТ определяет соотношение алюминия и остальных компонентов. В этом же документе указаны требования.
Кстати, в этом же документе можно найти и наименование иностранных аналогов, например,
Д16 можно заменить на AlCu4Mg1, а Д16ч на сплав 2124.
В документах, которые предоставляет производитель, в обязательном порядке должны быть указаны не только марка готовой продукции но и ее химический состав.
Немного экономики
Изделия из дюралюминиевого сплава не составит труда приобрести. Его производство развёрнуто почти на всех предприятия цветной металлургии. Цена на продукцию образовываются в зависимости от состава, сортамента, размеров отгрузки и, конечно, удалённостью производителя до места реализации.
Немного слов в заключении
Про дюралюминий, можно смело сказать, что его появление обеспечило технологические прорывы в самолетостроении, космической промышленности и без своевременного появления мы бы летали на самолетах из дерева.
Дюралюминий — это. Дюралюминий: состав, свойства, цена
Дюралюминий — это материал, созданный на основе чистого алюминия с легирующими элементами, включение которых в состав плавки изменяет свойства металла. Мягкий и легкий алюминий приобретает нагрузочную устойчивость, сохраняя при этом все преимущества чистого элемента.
Случайное открытие
Дюралюминий – это сплав алюминия с небольшим количеством меди, который состаривают при определенной температуре в искусственно созданных условиях. Материал был изобретен в 1903 году Альфредом Вильмом, служившим инженером на немецком заводе. В ходе экспериментов им была замечена закономерность, подтвержденная путем длительных опытов. Он выяснил, что если сплавить алюминий и 4% меди, а потом закалить полученный материал при температуре +500°C с последующим резким охлаждением и выдержкой при комнатной температуре в течение нескольких дней, то получается металл с повышенными показателями прочности, при полном сохранении пластичных свойств главного элемента.
В течение последующих лет были получены сплавы с большим количеством добавок, что увеличило прочность материала. На современном этапе дюралюминий – это высокопрочный сплав, в состав которого, в зависимости от разновидности, могут входить медь, магний, кремний, цинк и пр.
Прочностные свойства дюралюминия демонстрируют высокие показатели — до 370 МПа (прочность чистого алюминия — 70-80 МПа), что делает материал востребованным во многих областях промышленности. Сплав алюминия с химическими элементами, в определенных пропорциях, варьирует характеристики полученного материала. Базовый сплав состоит из классических пропорций ингредиентов.
Дюралюминий состав имеет следующий:
- Медь (Cu) — 0.5% от всей массы.
- Марганец (Mn) составляет 0,5% сплава.
- Магний (Mg) — 1,5 % общей массы.
- Кремний (Si) — 1,2 %.
- Железо (Fe) составляет около 0,1% состава.
- Алюминий (Al) — основной элемент.
Основные виды сплавов
Существует несколько видов сплавов, отличающихся своими характеристиками.
Каким же может быть дюралюминий (состав, лигатуры и качества)?
- Алюминий + марганец (Al+ Mg), алюминий + магний (Al+ Mn), второе название «магналии» – характеризуется устойчивостью к коррозии, высокими показателями пайки, сварки. Плохо поддается резке. Сплавы этих композиций не подвергают дополнительной закалке. Материал используется для изготовления труб бензопроводов, авторадиаторов, баков различного назначения, в строительных работах и т. д.
- Алюминий + марганец + кремний (Al + Mg + Si), сплаву дали название «авиаль». Свойства дюралюминия этой композиции — устойчивость к коррозии, легкость и прочность сварных швов, мелкое зерно. Закалка происходит при температуре +515–525°C с резким охлаждением в воде (+20°C) в течение 10 суток. Основная сфера применения – изделия, использующиеся в условиях повышенной влажности, изготовление материалов, деталей, машин в авиастроении, автомобильной промышленности, в последнее время авиаль заменяет дорогостоящую сталь в деталях мобильных телефонов и др.
- Алюминий + медь + марганец (Al+Cu+Mg), или дюралюмин, — конструкционный материал, в зависимости от необходимости получения конечных свойств, количество каждого легирующего элемента может варьироваться. Сплав нашел применение в авиастроении, космической отрасли, для изготовления скоростных железнодорожных составов («Сапсан») и др. Недостатком сплава является его коррозийная неустойчивость. Дюралюминий листовой требует тщательной антикоррозийной обработки, что в основном происходит путем нанесения на поверхность чистого алюминия.
Применение
Дюралюминий – это основной материал для самолетостроения и космической отрасли. Первое применение для воздушных судов произошло в 1911 году при строительстве дирижаблей. В 21 веке существует более десяти марок этого легкого и прочного материала. Для деталей самолетов чаще всего используют марку Д16т, в состав которой входит девять металлов, например титан, никель и пр., а лигатура состоит из меди, кремния, магния. Количество алюминия в сплаве ограничено стандартным содержанием – 93%.
Не все сплавы дюралюминия хорошо поддаются сварке, поэтому многие изделия делаются на заклепках и прочих видах креплений. Основным промышленным применением материала стало самолетостроение, автомобилестроение, станкостроение. Но не только высокие технологии используют дюраль, например, лодка для личного использования, сделанная из этого материала, прослужит более 20 лет, а при хорошем уходе и профилактике — и того дольше.
В судостроении из материала делаются не только корпуса кораблей, но и большое количество внутренних деталей корпуса, узлов. Трубы из дюралюминия, толстостенные и тонкостенные, используются повсеместно, от жилищно-коммунальных коммуникаций до газовых трубопроводов. Прокатные листы используются в строительных конструкциях.
Преимущества и недостатки
Дюралюминий – это сплав на основе алюминия, который, как любой материал, имеет преимущества. Среди них:
- Высокие показатели статической прочности.
- Продолжительный срок эксплуатации.
- Низкая уязвимость к разрушению.
- Устойчивость ко многим агрессивным средам, механическому, температурному воздействию.
- Адаптированность к сварным работам (алюминий в чистом виде плохо реагирует на сваривание швов).
- Многочисленность областей применения.
Есть один существенный недостаток, которым обладает дюралюминий – это подверженность коррозионным поражениям. Все изделия из материала в обязательном порядке плакируют чистым алюминием или покрывают грунтовочными составами, препятствующими появлению ржавчины.
Приобрести материал не представляет сложности, стоимость формируется в зависимости от компонентного состава. Большинство заводов, производящих цветные металлы, выпускают дюралюминий. Цена зависит от многих факторов, в частности от вида изделия, объема поставки и других условий. В сопроводительных документах производитель обязан указать данные о процентном содержании сплава, соответствии ГОСТу, эксплуатационные характеристики.
Стоимость изделий из дюраля (уголок, труба, лист) стартует от 580 рублей за килограмм. При увеличении объема поставки цена за тонну труб из сплава составляет около 510 тысяч рублей. Дюралюминиевые круги стартуют в цене от 250 рублей за килограмм. Круг – условное обозначение заготовки материала, сечением которого является круг различной величины, длина изделия достигает 3 метров.
Дюраль (дюралюмин) представляет собой группу важных промышленных сплавов, сыгравших большую роль в развитии самолётостроения и других областей техники. Современные дюралюмины — это многокомпонентные сплавы на основе системы А1-Cu-Mg с добавками марганца и других элементов.
Все дюралюмины, применяющиеся в настоящее время в промышленности, можно разделить на четыре подгруппы:
1. классический дюралюмин (Д1), состав которого практически не изменился с 1908 года;
2. дюраль повышенной прочности (Д16), отличается от сплава Д1 более высоким содержанием магния;
3. дюраль повышенной жаропрочности (Д19 и ВД17), главным отличием которых является увеличенное отношение Mg/Сu;
4. дюраль повышенной пластичности (Д18), отличается пониженным содержанием меди и магния.
Помимо меди и магния в дюрали всегда содержатся марганец и примеси железа и кремния.
Медь и магний — основные компоненты, обеспечивающие упрочнение сплавов. Марганец является обязательной присадкой, измельчающей структуру, повышающей прочность и коррозионную стойкость.
Железо и кремний — неизбежные примеси. Железо является вредной примесью, снижающей прочность и пластичность дюралюмина. Кремний до некоторой степени устраняет вредное влияние железа, связывая его в более легко разрушаемую при деформации фазу.
Наибольшее применение среди дюралюминов нашли сплавы Д1 и Д16, которые широко используют в авиационной промышленности. Из сплава Д1 изготовляют листы, профили, трубы, проволоку, штамповки и поковки. Такие же полуфабрикаты, кроме поковок и штамповок, получают из сплава Д16.
Дюралюмины повышенной пластичности (Д18) имеют узкое назначение — из них изготовляют заклёпки для авиастроения. Из сплавов ВД17 и Д19 можно получать различные деформированные полуфабрикаты, предназначенные для работы при повышенных температурах.
Сплав Д16 при комнатной температуре обладает наиболее высокой прочностью по сравнению с другими дюралюминами.
Для обеспечения высокой прочности дюраль подвергают закалке и естественному или искусственному старению. Чтобы уяснить причины упрочнения сплавов при термической обработке, рассмотрим фазовый состав и превращения в двухкомпонентном сплаве, состоящем из алюминия и 4% меди (рис1.).
Рис. 1 .Часть диаграммы состояния Аl — Cu.
Равновесная структура сплава при комнатной температуре представляет собой — твёрдый раствор, содержащий около 0,5% меди, и включения интерметаллидов типа СuАl2, При такой структуре сплавы обладают низкой прочностью и хорошей пластичностью. Для максимального упрочнения сплавов термической обработкой необходимо решить две задачи:
1. Повысить прочность основной части структуры, т.е. кристаллов — твёрдого раствора;
2. Обеспечить образование вместо относительно крупных избыточных кристаллов интерметаллида СuАl2,большого количества мельчайших вторичных выделений, препятствующих движению дислокаций.
Известно, что напряжение, необходимое для «проталкивания» дислокации между частицами, разделёнными расстоянием L, равно:
G — модуль сдвига, в — вектор Бюргерса дислокации.
Следовательно, чем мельче частицы, тем больше их количество, меньшее расстояние L между ними и большее напряжение «проталкивания». Отсюда, чем мельче частицы, тем больше их упрочняющее воздействие.
Первой упрочняющей операцией для дюралюмина является закалка. Возможность применения закалки основана на наличии переменной растворимости меди в алюминии. Её цель — получить в сплаве неравновесную структуру пересыщенного твёрдого раствора с максимальной концентрацией меди. Закалка заключается в нагреве сплава несколько выше линии переменной растворимости (но не выше солидуса) с последующим резким охлаждением в холодной воде.
При нагреве происходит полное растворение вторичных кристаллов Си Аl2, и сплав приобретает однофазную структуру — твёрдого раствора с высокой концентрацией меди (около 4%). В результате быстрого охлаждения распад высокотемпературного твёрдого раствора не успевает происходить, несмотря на понижение растворимости меди. Таким образом, при комнатной температуре удается зафиксировать пересыщенный твёрдый раствор меди в алюминии с сильно искажённой кристаллической решёткой. Это искажение решётки твёрдого раствора способствует торможению дислокаций и вызывает повышение прочности сплава.
Так, например, отожжённый дюралюмин Д16 имеет предел прочности 220 Мпа, а непосредственно после закалки около 300 Мпа. Однако наибольшее упрочнение происходит при последующем старении.
Старение представляет собой выдержку закалённого сплава при сравнительно невысоких температурах, при которых начинается распад пересыщенного твёрдого раствора или подготовительные процессы, предшествующие его распаду.
Сильная пересыщенность твёрдого раствора после закалки обуславливает его высокую свободную энергию. Распад твёрдого раствора приближает структуру к равновесной, а следовательно, ведёт к уменьшению свободной энергии системы, т.е. является самопроизвольным процессом.
В закалённом дюралюмине подготовительные стадии распада проходят без специального нагрева, при вылёживании в естественных условиях в цехе, на складе или в другом помещении, где температура составляет от 0°С до 30°С. Такое вылёживание в естественных условиях приводит к некоторым изменениям структуры и сопровождается повышением твёрдости и прочности. Этот процесс длится около 5. 7 суток и называется естественным старением. Процесс старения, происходящий при повышенных температурах 100. 20 OC, называется искусственным старением.
При старении изменение структуры и свойств в зависимости от температуры и времени выдержки происходит в несколько этапов.
На первом этапе в решётке твёрдого раствора образуются субмикроскопические зоны с высокой концентрацией меди. Если в основном пересыщенном растворе содержится около 4% меди (в рассматриваемом сплаве Аl + 4% Cu), а в соединении CuАl2, которое должно выделиться в конечном счёте из раствора — 52% Cu, то в этих зонах концентрация меди промежуточная и возрастает по мере развития процесса. Эти зоны получили название зоны Гинье-Престона, или зон Г.П.. В сплавах типа дюралюмин они имеют пластинчатую форму, а их кристаллическая структура такая же, как и у твёрдого раствора, но с меньшим параметром решётки.
Сущность второго этапа процесса (деление на этапы весьма условно) заключается в некотором росте зон Г.П., обогащении их медью до концентрации, близкой к соединению СuAl2, и упорядочении их структуры.
Третий этап наблюдается при повышенных температурах старения (или при длительных выдержках), когда из пересыщенного раствора выделяются частицы промежуточной фазы . Этот этап является началом собственно распада пересыщенного твёрдого раствора. — фаза по составу соответствует стабильной фазе (CuAl2), но имеет свою особую кристаллическую решётку, отличающуюся от решётки твёрдого раствора и от решётки CuА12. Выделения — фазы не полностью отделены от твёрдого раствора, так как их кристаллические решётки когерентны и не отделены друг от друга поверхностью раздела.
Четвёртый этап характеризуется образованием стабильной фазы (CuAl2). Когерентность решёток твёрдого раствора и выделяющейся фазы полностью нарушается. В дальнейшем частицы CuAl2 коагулируют (укрупняются).
Рассмотренные выше этапы охватывают процесс распада пересыщенного раствора полностью, до получения равновесной структуры, соответствующей диаграмме состояния. При естественном старении обычно образуются зоны Г.П., при искусственном старении — фаза. Четвёртая стадия наблюдается лишь при отжиге, т.е. при нагреве до высоких температур 300. 400 OС.
Описанные выше превращения при старении закалённого дюралюмина сопровождаются изменением свойств. На рис.2. схематично показана типичная закономерность изменения твёрдости (прочности) закалённого сплава в зависимости от температуры нагрева при старении.
Рис.2 Изменение твёрдости закалённого дюралюмина в зависимости от температуры старения
Нагрев пересыщенного раствора первоначально сопровождается ростом твёрдости и прочности, а затем вызывает их снижение. Упрочнение связано с первыми этапами процесса распада, т.е. с образованием зон Г.П. или выделением промежуточных метастабильных фаз (-фазы). Последующие этапы, приводящие к образованию и коагуляции стабильной фазы CuAl2 (-фазы), обуславливают разупрочнение.
Значительное разупрочнение дирали при естественном и искусственном старении является результатом того, что зоны Г.П. и метастабильные промежуточные фазы служат препятствием для движения дислокаций. Скольжение дислокаций осуществляется путём проталкивания их между этими частицами. По мере того, как расстояние между частицами уменьшается, напряжение «проталкивания» дислокаций между препятствиями возрастает, что и приводит к упрочнению. Именно поэтому максимальный эффект упрочнения наблюдается при тех режимах старения, при которых образуются дисперсные, равномерно распределённые на небольших расстояниях одна от другой метастабильные промежуточные фазы. Укрупнение частиц приводит к уменьшению их количества, увеличивает расстояния между ними и способствует снижению прочности и твёрдости.
Режим упрочняющей обработки дюралюминов разных марок отличаются незначительно, но особенностью их термической обработки является необходимость жёсткого соблюдения рекомендованной температуры нагрева под закалку. Так, например, для Д16 температура закалки должна составлять 495. 505 °С. Это требование объясняется тем, что указанные температуры весьма близки к температуре начала плавления. Превышение рекомендуемых температур вызывает оплавление границ зёрен и вызывает резкое снижение пластичности. Что касается режимов старения, то они могут быть разнообразными. Так при естественном старении сплава Д16 максимальная прочность достигается через 4 суток. Искусственное старение при температурах 120. 190°С значительно быстрее и, как правило, не превышает нескольких часов.
Дюралюмины способны обеспечивать высокие механические свойства (на уровне углеродистых сталей), обладая в то же время малым удельным весом. Это делает их очень ценным конструкционным материалом для многих областей техники.
К недостаткам дюралей следует отнести их пониженную по сравнению с алюминием коррозионную стойкость. Для них надо применять специальные средства защиты от коррозии. Наибольшее распространение получили плакирование (покрытие листов дюралюмина тонким слоем чистого алюминия) и электрохимическое оксидирование (анодирование).
Расширение при нагреве. Дилатограммы. Расширение металла при увеличении температуры.
Закалка стали. Термообработка углеродистой стали для упрочнения и повышения твердости.
Дюралюминий: состав, свойства и применение
Дюралюминий — сплав, состоящий из основы в виде алюминия с медью и добавками других металлов. Открытие технологии его изготовления произошло в самом начале девятнадцатого века работником немецкого металлургического завода. После многочисленных экспериментов он установил, что при добавлении к алюминию меди в соотношении 96% на 4% получается сплав, который при выдержке в помещении с комнатной температурой сохраняет пластичность основного элемента с повышением показателей прочности.
Дюралюминий: особенности
Само наименование сплава пошло от торговой марки Dural, под которой был начат его выпуск. В русский язык оно пришло в начале двадцатого века и обозначает целую группу сплавов с алюминием в основе. Могут встречаться различные формы, например «дуралюминий» и «дюраль».
Области применения дюралюминия
Формула успеха дюралюминия была проста. Лёгкий вес и прочность нового продукта способствовали его быстрому распространению. Первым большим его применением стали конструкции каркаса дирижабля. Показал он себя отлично, и со временем ему находили место во всё больших отраслях машиностроения.
Авиастроители по достоинству оценили дюраль, и она быстро стала основой самолётостроения, а также в будущем основным конструкционным материалом в производстве космической техники.
Её применяют в производстве поездов. Дюралюминий в наши дни можно встретить даже на кухне в виде многочисленных бытовых предметов. А также активно используется дюралюминиевая фольга, в которой продают кондитерские изделия.
Активно используется сплав и в строительстве. Различные трубы, листы являются частями конструкций зданий.
Используется дюраль и в автомобилестроении, помогая инженерам уменьшить вес машины, улучшая технические показатели автомобиля. Благодаря устойчивости к высоким температурам, её можно использовать и для внутренних механизмов двигателя.
Дюралюминий лучше переносит вибрацию, чем сталь, что позволило применять его в буровых работах.
Можно заметить, что не все сплавы дюралюминия пригодны для сварки. Например, при строительстве самолётов для создания конструкций из деталей дюралюминия используются заклёпки. Они могут делаться из того же сплава дюралюминия, только пригодного для сварочных работ.
Дюраль: состав сплава
С течением времени состав сплава дюрали совершенствовался, появилось множество новых видов, их различия как в составе примесей, так и способе последующей обработки.
- Al+Cu+Mg. Этот тип называется дюралюмином. В зависимости от концентрации меди и марганца в сплавах меняются и его общие свойства и характеристики. Данный вид не имеет дополнительной защиты от коррозии, потому для его эксплуатации необходимо дополнительное покрытие для защиты от влаги.
- Al+Mg+Si. Такой тип называется «авиаль». Добавление к алюминию частей магния и кремния повысило коррозионную стойкость сплава. Для получения своих свойств сплав проходит термообработку при температуре около пятисот градусов по Цельсию и охлаждается в воде с температурой двадцать градусов с естественным старением около суток. Такая обработка позволяет эксплуатировать сплав в условиях повышенной влажности и под напряжением.
- Al+Mg, Al+Mn. Этот сплав имеет название «магналии». При его производстве не используется термическая обработка. Основными его плюсами является повышенная устойчивость к коррозии и хорошая пригодность к сварочным и паяльным работам.
Состав дюралюминия в процентах можно рассмотреть на примере состава сплава дюралюминий д16:
- Al (Алюминий): 91 — 94.7%.
- Cu (Медь): 3.7−4.9%.
- Fe (Железо): 0.5%.
- Si (Кремний): 0.5%.
- Zn (Цинк): 0.25%.
- Mg (Магний): 1.1 — 1.8%.
- Cr (Хром): 0.1%.
- Mn (Марганец): 0.4% – 0.9%.
- Ti (Титан): 0.15%.
Могут добавляться маркировки, зависящие от форм выпуска сплава:
- «Т» — закалка в естественных условиях.
- «Т1» — после процесса искусственного старения.
- «А» — после покрытия специальными лаками и анодирования.
Свойства дюралюминия
Не смотря на попытки борьбы с коррозией путём добавления марганца и магния, дюралюминий все же ей подвержен и подвержен достаточно, чтобы на это обратить внимание. Потому, при эксплуатации необходимо защитить его при помощи какого-либо покрытия. Защита должна быть настолько тщательной, насколько это возможно.
Дюраль отличается небольшим весом при большой прочности. Благодаря этому её и используют как основной конструкционный материал в космонавтике и авиации. Используется также в авиастроении, при производстве скоростных поездов и различных других областях машиностроения.
Средняя плотность дюралюминия 2500−2800 килограмм на кубический метр.
Дюралюминиевый сплав, в отличие от алюминия чистого, хорошо подходит к сварочным работам.
Обладает высокой устойчивостью воздействиям среды и низкой уязвимостью к разрушению.
Появление такого лёгкого и прочного материала позволило поднять машиностроение на новый уровень и построить такие технические проекты, которые ранее казались неосуществимыми.