Содержание
- Методы закалки стали 40х и их особенности
- Немного общих сведений
- Снятие закалки
- Закалка стали в домашних условиях
- Подробно о нагреве металла
- Методы закалки стали
- Защита изделия от внешних воздействий
- Заключение
- Можно ли повысить твердость металлов и их сплавов?
- Закалка стали и сплавов
- Термообработка цветных металлов
- Оборудование и материалы
- Термическая обработка (термообработка) стали, сплавов, металлов.
- График режима термической обработки проката из этих сталей. Обоснование выбора температуры нагрева, продолжительности выдержки и скорости охлаждения
- Сталь 40х13 — состав, свойства, способы обработки, применение
- Характеристики
- Состав материала
- Термообработка стали
- Технологические свойства стали 40Х13
- Аналоги стали и область применения
Температура закалки стали 40х
Методы закалки стали 40х и их особенности
В процессе изготовления различных металлоконструкций металл подвергается процедурам, в число которых входит и термообработка. Очень важно грамотно подойти к проведению этой операции, выполнив требования технологии, что позволит придать конечному изделию улучшенные механические свойства.
Эта тема является довольно обширной и включает довольно большое количество важных вопросов. Однако нам хотелось бы рассмотреть особенности процедуры закалки стали, ее применение и технологию. Возможно, поначалу возникает впечатление, что термообработка является довольно сложной процедурой, однако при более тщательном ознакомлении становится ясно, что все обстоит совсем не так.
Немного общих сведений
Под закалкой понимается процедура, во время которой изменяется кристаллическая решетка стали и ее сплавов, за счет чего удается добиться поддержания критической температуры, причем последняя выбирается для определенного материала в индивидуальном порядке. Обычно по достижении требуемого температурного уровня заготовка подвергается резкому охлаждению. Для выполнения этого этапа используют воду или масло.
Важным моментом является то, что в отношении инструментальных сталей выполняют неполную закалку. В основе лежит нагрев до температуры, при которой удается вызвать появление избыточных фаз. Ряд иных марок сталей требует проведения полной закалки. Их нагревают до отметки, превышающей на 50 градусов температуру, которую выдерживают при неполной закалке. В случае обработки цветных металлов нет необходимости доводить термообработку до полиморфного превращения, а вот для стали полиморфное превращение является обязательным требованием.
Снятие закалки
В соответствии с технологией, при охлаждении изделия обязательно должен быть проведён отпуск. Его целью является повышение пластичности и снижение хрупкости материала. В то же время важно обеспечить неизменную прочность заготовки. Эта задача решается путем выдерживания изделия в печи, нагретой до температуры от 150 до 650 градусов, где она постепенно остывает. Принято выделять три типа отпусков:
- Низкотемпературный. Основной здесь эффект сводится к приданию обрабатываемой заготовке повышенных характеристик износостойкости. При этом такая сталь лучше переносит динамические нагрузки. Сама процедура обработки проходит при температуре 260 градусов. Подобный тип отпуска проводится в отношении изделий, выполненных из низколегированных и углеродистых сталей.
- Среднетемпературный. Для его проведения выдерживается температура в пределах от 350 до 500 градусов. Обычно его применяют в отношении пружин, рессоров, штампов и пр. Эффект от подобного отпуска заключается в повышении упругости и выносливости изделия.
- Высокотемпературный. Его проводят в условиях температуры 500 и 680 градусов. Подобная обработка позволяет придать изделию более высокую прочность и пластичность. Этой процедуре обычно подвергают детали, которые будут в дальнейшем испытывать значительные нагрузки.
Закалка стали в домашних условиях
Бывают ситуации, когда домашний мастер сталкивается с проблемой повышения прочностных характеристик бытового инструмента. Причем для решения этой задачи нет необходимости обращаться к специалистам, поскольку он сам может все сделать самостоятельно. Справиться с этой задачей можно, обладая минимум оборудования и знаний.
Рассмотрим более подробно ситуацию на топоре. Если рассматривается инструмент советского производства, то можно не сомневаться в его высоком качестве изготовления. В то же время подобного нельзя сказать об изделиях, которые продаются сегодня. Если присутствуют признаки заминания или выкрашивания, то из этого можно сделать вывод о нарушении требований технологии закалки. Однако в силах каждого мастера исправить эту ситуацию.
Первое, что нужно сделать — разжечь костер с углями. Желательно довести его до такого состояния, чтобы угли имели как можно более белый цвет. Так можно будет понять, что они нагрелись до максимально высокой температуры. Помимо этого, нам понадобятся две емкости. В первую мы нальем масло, в качестве которого можно использовать обычное машинное. Другой же резервуар следует наполнить чистой холодной водой.
Дождавшись момента, когда кромка инструмента приобретет малиновый цвет, топор извлекают из костра. Чтобы избежать ожога вследствие взаимодействия с высокой температурой, рекомендуется использовать кузнечные клещи или любую иную альтернативу им. После этого нужно быстро поместить топор в емкость с маслом и держать его там в течение 3 секунд. По истечении этого времени топор извлекают, дают остыть ему в течение тех же 3 секунд, после чего операцию повторяют. Проводить процедуру погружения топора в масло нужно до тех пор, пока инструмент не лишится своего яркого света.
Далее нам предстоит погружать топор в емкость с водой, при этом важно периодически мешать жидкость. Этой операцией завершается закалка стали в домашних условиях.
Подробно о нагреве металла
Если следовать технологии, то закалка металла требует проведения 3 этапов:
- Нагрев стали;
- Выдержка. Благодаря выполнению этой операции удается довести до конца все структурные превращения и обеспечить выполнение сквозного прогрева;
- Охлаждение.
Если приходится иметь дело с конструкциями, выполненными из углеродистых сталей, то их закалку проводят в камерных печах. Особенностью этой процедуры является отсутствие необходимости в предварительном подогреве. Это связано со способностью материала прекрасно переносить такие неприятные явления, как коробление и растрескивание. Если необходимо закаливать такие сложные конструкции, как резкие переходы и тонкие грани, то здесь без предварительного подогрева не обойтись. Подобная процедура может быть выполнена двумя способами:
- С использованием соляных печей, в которые заготовку нужно погрузить на 3-4 секунды в три приема;
- При помощи отдельных печей, в которых следует создать температурный режим 400- 500 градусов Цельсия.
Важным моментом закалки металла является то, что эта процедура должна проводиться при равномерном нагреве. Бывает так, что в течение одного приема такую задачу невозможно решить. В этом случае следует выдержать условия для проведения сквозного прогрева. Особое внимание следует уделить количеству изделий, которые планируется закаливать. С увеличением их количества необходимо увеличивать длительность их прогрева. Скажем, если закалке будет подвергаться дисковая фреза, имеющая диаметр 2,4 см, то ее необходимо нагревать в течение 13 минут. Если подобной обработке планируется подвергать десяток аналогичных изделий, то время нагрева должно быть увеличено до 18 минут.
Методы закалки стали
Наибольшее распространение последнее время получили следующие методы:
Закалка в одном охладителе
Этот метод основывается на погружении заготовки в закалочную жидкость, где ее держат до того момента, пока она полностью не остынет. Особенностью этого метода является то, что им может воспользоваться и рядовой потребитель.
Закалка в двух средах
Этот метод применим в отношении изделий, выполненных из углеродистых сталей. Основные операции сводятся к погружению заготовки в воду, после чего ее окунают в масло.
Струйчатая
Здесь заготовка подвергается воздействию струей воды. К этому методу закалки прибегают в ситуации, когда приходится закаливать лишь часть детали. Этот вариант закалки отличается отсутствием паровой рубашки, что положительным образом сказывается на эффективности подобной закалки.
Ступенчатая
Для обработки металла используется закалочная среда, в которой поддерживается температура выше мартенситной. Далее заготовку выдерживают при созданном температурном режиме. Очень важно обеспечить одинаковую температуру на каждом сечении заготовки, которая не должна отличаться от температуры, поддерживаемой в закалочной ванне.
Защита изделия от внешних воздействий
Нередки ситуации, когда приходится решать проблему защиты стали от вредных воздействий, которые могут быть созданы в результате появления окалины или потери углерода. В качестве решения этой проблемы могут выступить специальные газы, которые подаются в печи, где размещена обрабатываемая деталь. Но следует помнить, что подобная процедура может быть выполнена при условии, что печь имеет герметичную конструкцию. Чаще всего в качестве источника газа используется специальный генератор, топливом для которого выступают углеводородные газы, например, метан.
При проведении полной закалки металлической заготовки важно обеспечить ей защиту. В некоторых ситуациях нет возможности подвести газ. Тогда эту операцию можно проводить в герметичной таре. Герметиком здесь может выступать глина, способная исключить проникновение внутрь воздуха. Но еще до начала этой процедуры рекомендуется покрыть заготовку слоем чугунной стружки.
Заключение
Подавляющее большинство металлоконструкций, которые используются в строительстве, должны обладать повышенными характеристиками прочности. Решить эту задачу можно путем такой процедуры, как закалка, которая проводится в отношении всех изделий еще на этапе их изготовления. Пренебрегать ею не рекомендуется, поскольку это позволяет придать им улучшенные свойства, которые расширяют спектр применения изделий.
Важный момент, которому следует уделить особое внимание при закалке металлоконструкций — соблюдение технологии проведения этой работы. Следует в точности выдержать необходимую температуру, от которой в значительной степени зависит, насколько высокие характеристики прочности приобретет обрабатываемое изделие. Это, в свою очередь, оказывает влияние на максимальный срок службы конструкции, которая будет изготовлена из обработанной подобным образом стали.
Можно ли повысить твердость металлов и их сплавов?
Технологии придания большей твердости металлам и сплавам совершенствовались в течение долгих веков. Современное оборудование позволяет проводить термическую обработку таким образом, чтобы значительно улучшать свойства изделий даже из недорогих материалов.
Закалка стали и сплавов
Закалка (мартенситное превращение) — основной способ придания большей твердости сталям. В этом процессе изделие нагревают до такой температуры, что железо меняет кристаллическую решетку и может дополнительно насытиться углеродом. После выдержки в течение определенного времени, сталь охлаждают. Это нужно сделать с большой скоростью, чтобы не допустить образования промежуточных форм железа.
В результате быстрого превращения получается перенасыщенный углеродом твердый раствор с искаженной кристаллической структурой. Оба эти фактора отвечают за его высокую твердость (до HRC 65) и хрупкость.
Большинство углеродистых и инструментальных сталей при закаливании нагревают до температуры от 800 до 900С, а вот быстрорежущие стали Р9 и Р18 калятся при 1200-1300С.
Микроструктура быстрорежущей стали Р6М5: а) литое состояние; б) после ковки и отжига;
в) после закалки; г) после отпуска. ×500.
Режимы закалки
- Закалка в одной среде
Нагретое изделие опускают в охлаждающую среду, где оно остается до полного остывания Это самый простой по исполнению метод закалки, но его можно применять только для сталей с небольшим (до 0,8%) содержанием углерода либо для деталей простой формы. Эти ограничения связаны с термическими напряжениями, которые возникают при быстром охлаждении — детали сложной формы могут покоробиться или даже получить трещины.
- Ступенчатая закалка
При таком способе закалки изделие охлаждают до 250-300С в соляном растворе с выдержкой 2-3 минуты для снятия термических напряжений, а затем завершают охлаждение на воздухе. Это позволяет не допускать появления трещин или коробления деталей. Минус этого метода в сравнительно небольшой скорости охлаждения, поэтому его применяют для мелких (до 10 мм в поперечнике) деталей из углеродистых или более крупных — из легированных сталей, для которых скорость закалки не столь критична.
- Закалка в двух средах
Начинается быстрым охлаждением в воде и завершается медленным — в масле. Обычно такую закалку используют для изделий из инструментальных сталей. Основная сложность заключается в расчете времени охлаждения в первой среде.
- Поверхностная закалка (лазерная, токами высокой частоты)
Применяется для деталей, которые должны быть твердыми на поверхности, но иметь при этом вязкую сердцевину, например, зубья шестеренок. При поверхностной закалке внешний слой металла разогревается до закритических значений, а затем охлаждается либо в процессе теплоотвода (при лазерной закалке), либо жидкостью, циркулирующей в специальном контуре индуктора (при закалке током высокой частоты)
Закаленная сталь становится чрезмерно хрупкой, что является главным недостатком этого метода упрочнения. Для нормализации конструкционных свойств производят отпуск — нагрев до температуры ниже фазового превращения, выдержку и медленное охлаждение. При отпуске происходит частичная «отмена» закалки, сталь становится чуть менее твердой, но более пластичной. Различают низкий (150-200С, для инструмента и деталей с повышенной износостойкостью), средний (300-400С, для рессор) и высокий (550-650, для высоконагруженных деталей) отпуск.
Таблица температур закалки и отпуска сталей
Термообработка цветных металлов
Сплавы на основе других металлов не отвечают на закалку столь же ярко, как стали, но их твердость тоже можно повысить термообработкой. Обычно используют сочетание закалки и предварительного отжига (нагрева выше точки фазового превращения с медленным охлаждением).
- Бронзы (сплавы меди) подвергают отжигу при температуре чуть ниже температуры плавления, а потом закалке с охлаждением водой. Температура закалки от 750 до 950С в зависимости от состава сплава. Отпуск при 200-400С производят в течение 2-4 часов. Наибольшие показатели твердости, до HV300 (около HRC 34) можно при этом получить для изделий из бериллиевых бронз.
- Твердость серебра можно повысить отжигом до температуры, близкой к температуре плавления (тусклый красный цвет) с последующей закалкой.
- Различные сплавы никеля подвергают отжигу при 700-1185С, такой широкий диапазон определяется разнообразием их составов. Для охлаждения используют соляные растворы, частички которых потом удаляют водой либо защитные газы, препятствующие окислению (сухой азот, сухой водород).
Оборудование и материалы
Для нагрева металла при термообработке используются 4 основных типа печей:
— соляная электродная ванна
— камерная печь
— печь непрерывного горения
— вакуумная печь
В качестве закалочных сред, в которых происходит охлаждение, используются жидкости (вода, минеральное масло, специальные водополимеры (Термат), растворы солей), воздух и газы (азот, аргон) и даже легкоплавкие металлы. Сам агрегат, где происходит охлаждение, называется закалочная ванна и представляет собой емкость, в которой происходит ламинарное перемешивание жидкости. Важной характеристикой закалочной ванны является качество удаления паровой рубашки.
Старение и другие методы повышения твердости
Старение — еще один вид термообработки, позволяющий повысить твердость сплавов алюминия, магния, титана, никеля и некоторых нержавеющих сталей, которые подвергают предварительной закалке без полиморфного превращения. В процессе старения увеличиваются твердость и прочность, а пластичность понижается.
- Сплавы алюминия, например, дуралюмины (4-5% меди) и сплавы с добавлением никеля и железа выдерживают в пределах часа при температуре 100-180С
- Сплавы никеля подвергают старению в 2-3 этапа, что в сумме занимает от 6 до 30 часов при температурах от 595 до 845С. Некоторые сплавы подвергают предварительной закалке при 790-1220С. Детали из никелевых сплавов помещают в дополнительный контейнеры, чтобы предохранить от контакта с воздухом. Для нагрева используют электрические печи, для мелких деталей могут применяться соляные электродные ванны.
- Мартенситно-стареющие стали (высоколегированные безуглеродистые сплавы железа) стареют около 3 часов при 480-500С после предварительного отжига при 820С
Химико-термическая обработка — насыщение поверхностного слоя легирующими элементами,
- неметаллическими: углеродом (цементация) и азотом (азотирование) применяются для повышения износостойкости колен, валов, шестерней из низкоуглеродистых сталей
- металлическими: например, кремнием (силицирование) и хромом помогает повысить износо- и коррозионную стойкость деталей
Цементирование и азотирование производят в шахтных электропечах. Существуют также универсальные агрегаты, позволяющие проводить весь спектр работ по термохимической обработке стальных изделий.
Обработка давлением (наклеп) — увеличение твердости в результате пластической деформации при относительно низких температурах. Таким образом происходит упрочнение низкоуглеродистых сталей при холодной объемной штамповке, а также чистых меди и алюминия.
В процессе термической обработки изделия из стали могут претерпевать поразительные превращения, приобретая износостойкость и твердость, в разы большую чем у исходного материала. Диапазон изменения твердости сплавов из цветных металлов при термической обработке гораздо меньше, но их уникальные свойства зачастую и не требуют масштабного улучшения.
Термическая обработка (термообработка) стали, сплавов, металлов.
Термическая обработка (термообработка) — это технологический процесс изменения структуры сталей, сплавов и цветных металлов посредством широкого диапазона температур: поэтапных нагреваний и охлаждении с определенной скоростью. Такая обработка очень сильно изменяет свойства сталей, сплавов, металлов в сторону улучшения показателей, но при этом не изменяя их химический состав. Можно сказать, что основная цель термической обработки – это улучшение свойств и характеристик изделий из него.
Виды (стадии) термической обработки стали
Отжиг — термическая обработка (термообработка) металла, представляющая собой процесс нагревания до заданной температуры, а затем процесс медленного охлаждения. Отжиг бывает разных видов в зависимости от уровня температур и скорости процесса.
Нормализация — термообработка, принципиально похожая на отжиг. Основное отличие в том, что процесс отжига предполагает печь, а при нормализации охлаждение стали проходит на воздухе.
Закалка — этап термообработки, основанный на нагревании сырья до такого уровня температуры, который является выше критического (перекристаллизация стали). После выдержки в такой температуре в заданном интервале времени происходит охлаждение, быстрое, с заданной скоростью. Закаленной стали (сплавам) свойственна неравновесная структура и поэтому применяется такой вид термообработки как отпуск.
Отпуск — стадия термообработки, необходимая для снятия в стали и сплавах остаточного напряжения или максимального его снижения. Снижает хрупкость и твёрдость металла, увеличивает вязкость. Проводится после стадии закалки.
Старение — иначе еще называется дисперсионное твердение. После стадии отжига металл опять нагревают, но до более низкого уровня температур и с медленной скоростью остужают. Цель такой термообработки в получении особенных частиц упрочняющей фазы.
От степени необходимой глубины обработки различают термообработку поверхностную, которая затрагивает лишь поверхность изделий, и объемную, когда термическому воздействию подвергается весь объем сырья.
В отраслевой промышленности, в частности – в машиностроении, термическую обработку чаще всего проходит сталь следующих марок:
— сталь 45 (замещаемость 40Х, 50, 50Г2)
— сталь 40Х (замещаемость 38ХА, 40ХР, 45Х, 40ХС, 40ХФ, 40ХН)
— сталь 20 (замещаемость 15, 25)
— сталь 30ХГСА (замещаемость 40ХФА, 35ХМ, 40ХН, 25ХГСА, 35ХГСА)
Термообработка стали 45
Конструкционная углеродистая. Этап предварительной термической обработки называется нормализация, проходит на воздухе, а не в печи. довольно легко проходит механическую обработку. Точение, фрезеровку и т. д. Получают детали, например, типа вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки.
После закалки, которая является конечной стадией термообработки, детали достигают высокого уровня прочности и отличных показателей износостойкости. Подвергаются шлифовке. Высокое содержание углерода (0,45%) обеспечивает хорошую закаливаемость и, соответственно, высокую твёрдость поверхности и прочность изделия. Сталь 45 калят «на воду», когда после калки деталь охлаждают в воде. После охлаждения деталь подвергается низкотемпературному отпуску при температуре 200-300 градусов по Цельсия. При такой термообработке стали 45 достигает твердость порядка 50 HRC.
Изделия: Кулачки станочных патронов, согласно указаниям ГОСТ, изготовляют из сталей 45 и 40Х. Твёрдость Rc = 45 -50. В кулачках четырёх-кулачных патронов твёрдость резьбы должна быть в пределах Rс = 35-42. Отпуск кулачков из стали 45 производится при температуре 220-280°, из стали 40Х при 380-450° в течение 30-40 мин.
Расшифровка марки стали 45: марка 45 означает, что в стали содержится 0,45% углерода,C 0,42 — 0,5; Si 0,17 — 0,37;Mn 0,5 — 0,8; Ni до 0,25; S до 0,04; P до 0,035; Cr до 0,25; Cu до 0,25; As до 0,08.
Термообработка стали 40Х
Легированная конструкционная сталь. Для деталей повышенной прочности такие как оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, зубчатые венцы, болты, полуоси, втулки и прочих деталей повышенной прочности. Сталь 40Х также часто используется для производства поковок, штампованных заготовок и деталей трубопроводной арматуры. Однако последние перечисленные детали нуждаются в дополнительной термической обработке, заключающейся в закалке через воду в масле или просто в масле с последующим отпуском в масле или на воздухе.
Расшифровка марки стали 40Х. Цифра 40 указывает на то, что углерод в стали содержится в объеме 0,4 %. Хрома содержится менее 1,5 %. Помимо обычных примесей в своем составе имеет в определенных количествах специально вводимые элементы, которые призваны обеспечить специально заданные свойства. В качестве легирующего элемента в данном случае используется хром, о чем говорит соответствующая маркировка.
Термообработка стали 20
Термообработка стали 20 — сталь конструкционная углеродистая качественная. Широкое применение в котлостроении, для труб и нагревательных трубопроводов различного назначения, кроме того промышленность выпускает пруток, лист. В качестве заменителя стали 20 применяют стали 15 и 25.
По требованиям к механическим свойствам выделяют пять категорий.
— I категория: сталь всех видов обработки без испытания на ударную вязкость и растяжение.
— II категория: образцы из нормализованной стали всех видов обработки размером 25 мм проходят испытания на ударную вязкость и растяжение.
— III категория: испытания на растяжение проводят на образцах из нормализованной стали, размером 26-100 мм.
— IV категория: образцы для испытаний на растяжение и ударную вязкость изготавливают из термически обработанных заготовок размером не более 100 мм. Требования третьей и четвертой категории предъявляют к калиброванной, горячекатаной и кованной качественной стали.
— V категория. Испытания механических свойств на растяжение проводят на образцах из калиброванных термически обработанных (высокоотпущенных или отожженных) или нагартованных сталей.
Химический состав стали 20: углерод (C) — 0.17-0.24 %, кремний (Si) — 0,17-0,37%, марганец (Mn) — 0,35-0,65 %;содержание меди (Cu) и никеля (Ni) допускается не более 0,25%, мышьяка (As) — не более 0,08%, серы (S) — не более 0,4%, фосфора (Р) — 0,035%.
Структура стали 20 представляет собой смесь перлита и феррита. Термическая обработка стали 20 позволяет получать структуру реечного (пакетного) мартенсита. При таких структурных преобразованиях прочность возрастает, и пластичность уменьшается. После термического упрочнения прокат из стали 20 можно использовать для изготовления метизной продукции (класс прочности 8.8).
Технологические свойства стали 20: Температура начала ковки стали 20 составляет 1280° С, окончания — 750° С, охлаждение поковки — воздушное. Сталь 20 нефлокеночувствительна и не склонна к отпускной способности. Свариваемость стали 20 не ограничена, исключая детали, подвергавшиеся химико-термической обработке. Рекомендованы способы сварки АДС, КТС, РДС, под газовой защитой и флюсом.
Сталь 20 применяют для производства малонагруженных деталей ( пальцы, оси, копиры, упоры, шестерни) , цементуемых деталей для длительной и весьма длительной службы (эксплуатация при температуре не выше 350° С) , тонких деталей, работающих на истирание. Сталь 20 без термической обработки или после нормализации используется для производства крюков кранов, вкладышей подшипников и прочих деталей для эксплуатации под давлением в температурном диапазоне от -40 до 450°С . Сталь 20 после химико-термической обработки идет на производство деталей, которым требуется высокая поверхностная прочность ( червяки, червячные пары, шестерни) . Широко применяют сталь 20 для производства трубопроводной арматуры, труб, предназначенных для паропроводов с критическими и сверхкритическими параметрами пара, бесшовных труб высокого давления, сварных профилей прямоугольного и квадратного сечения и т. д.
Термообработка стали 30ХГСА
Относится к среднелегированной конструкционной стали. Сталь 30ХГСА проходит улучшение – закалку с последующим высоким отпуском при 550-600 °С, поэтому применяется при создании улучшаемых деталей (кроме авиационных деталей это могут быть различные корпуса обшивки, оси и валы, лопатки компрессорных машин, которые эксплуатируются при 400°С, и многое другое), рычаги, толкатели, ответственные сварные конструкции, работающие при знакопеременных нагрузках, крепежные детали, работающие при низких температурах.
Сталь 30ХГСА обладает хорошей выносливостью, отличными показателями ударной вязкости, высокой прочностью. Она также отличается замечательной свариваемостью.
Сварка стали 30ХГСАтоже имеет свои особенности. Она осуществляется с предварительным подогревом материала до 250-300 °С с последующим медленным охлаждением. Данная процедура очень важна, поскольку могут появиться трещины из-за чувствительности стали к резким перепадам температуры после сварки. Поэтому по завершении сварных работ горелка должна отводиться медленно, при этом осуществляя подогрев материала на расстоянии 20-40 мм от места сварки. Также, не более, чем спустя 8 часов по завершении сварки сварные узлы стали 30ХГСА нуждаются в закалке с нагревом до 880 °С с последующим высоким отпуском. Далее изделие охлаждается в масле при 20-50 °С. Отпуск осуществляется нагревом до 400 — 600 °С и охлаждением в горячей воде. Сварку же необходимо выполнять максимально быстро, дабы избежать выгорания легирующих элементов.
После прохождения термомеханической низкотемпературной обработки сталь 30ХГСА приобретает предел прочности до 2800 МПа, ударная вязкость повышается в два раза (в отличии от обычной термообработки стали 30хгса), пластичность увеличивается.
Термообработка стали 65Г
Сталь конструкционная рессорно-пружинная. Используют в промышленности пружины, рессоры, упорные шайбы, тормозные ленты, фрикционные диски, шестерни, фланцы, корпусы подшипников, зажимные и подающие цанги и другие детали, к которым предъявляются требования повышенной износостойкости, и детали, работающие без ударных нагрузок. (заменители: 70, У8А, 70Г, 60С2А, 9ХС, 50ХФА, 60С2, 55С2).
Термообработка стали 40
Сталь конструкционная углеродистая качественная. Использование в промышленности: трубы, поковки, крепежные детали, валы, диски, роторы, фланцы, зубчатые колеса, втулки для длительной и весьма длительной службы при температурах до 425 град.
Термообработка стали 40ХН
Сталь конструкционная легированная Используется в отраслевой в промышленности: оси, валы, шатуны, зубчатые колеса, валы экскаваторов, муфты, валы-шестерни, шпиндели, болты, рычаги, штоки, цилиндры и другие ответственные нагруженные детали, подвергающиеся вибрационным и динамическим нагрузкам, с предъявляемыми требованиями повышенной прочности и вязкости. Валки рельсобалочных и крупносортных станов для горячей прокатки металла.
Термообработка сталь 35
Сталь конструкционная углеродистая качественная. Используется в отраслевой промышленности. Это детали невысокой прочности, подвергающиеся невысокому уровню напряжения: оси, цилиндры, коленчатые валы, шатуны, шпиндели, звездочки, тяги, ободы, траверсы, валы, бандажи, диски и другие детали.
Термообработка стали 20Х13
Сталь коррозионно-стойкая жаропрочная. Используется в энергетическом машиностроении и печестроении; турбинные лопатки, болты, гайки, арматура крекинг-установок с длительным сроком службы при температурах до 500 град; сталь мартенситного класса Сталь марки 20Х13 и другие стали мартенситного класса: жаропрочные хромистые стали мартенситного класса применяют в различных энергетических установках, они работают при температуре до 600° С. Из них изготовляют роторы, диски и лопатки турбин, в последнее время их используют для кольцевых деталей больших толщин. Существует большое количество марок сталей данного класса. Общим для всех является пониженное содержание хрома, наличие молибдена, ванадия и вольфрама. Они эффективно упрочняются обычными методами термообработки, которая основана на у — a-превращении и предусматривает получение в структуре мартенсита с последующим улучшением в зависимости от требований технических условий. (заменители: 12Х13, 14Х17Н2)
График режима термической обработки проката из этих сталей. Обоснование выбора температуры нагрева, продолжительности выдержки и скорости охлаждения
График режима термической обработки стали 40Х представлен на рисунке 4.1.
Рисунок 4.1 — График режима термической обработки стали 40Х
сталь термический обработка
Температура 860 о С это оптимум для 40Х так как при этой температуре происходит превращение феррита и перлита в аустенит, резкое охлаждение которого и приводит к закалке стали (не диффузионного превращения аустенита).
Закалка с более высоких температур приводит к короблению детали, обезуглероживанию поверхности, росту зерна, а также возможно образование трещин.
Выдержку не делают длительной при закалке для того чтобы не произошел рост зерна, что может привести к пониженным прочностным свойствам.
Охлаждение делают в масле или в воде в зависимости от сечения изделия. Хромистые стали склонны к отпускной хрупкости, устранение которой требует быстрого охлаждения от температуры высокого отпуска. Хром значительно уменьшает критическую скорость закалки, поэтому хромистая сталь обладает глубокой прокаливаемостью. Температура мартенситного превращения при наличии хрома снижается. Хром препятствует росту зерна и повышает устойчивость против отпуска. Поэтому отпуск проводится при более высоких температурах по сравнению с отпуском углеродистых сталей.
Отпуск при температуре 490 — 550 °С почти полностью снимает остаточные напряжения, возникающие при закалке и обеспечиваются необходимые механические свойства материала такие как наилучшее соотношение прочности и вязкости. Хромистые стали склонны к отпускной хрупкости, поэтому после высокого отпуска должны охлаждаться ускоренно, мелкие детали в масло, а крупные в воду. Если охлаждать в воде изделие маленького сечения, то на нём могут возникнуть трещины. Если охлаждать изделие большого сечения в масле, то оно может не закалиться на сквозь, то есть претерпеть мартенситное превращение в поверхности (без диффузии), а в сердцевине произойдет диффузионное превращение и структура в сердцевине будет состоять из перлита [7].
График режима термической обработки стали 40Г2 представлен на рисунке 4.2.
Рисунок 4.2 — График режима термической обработки стали 40Г2
Закалку проводят с температур 820 o C (выше Ас3 на 40 о С) для того чтобы получить структуру аустенита. Обычно закалку легированных сталей проводят выше точки Ас3 на 30 — 50 o C, за исключением быстрорежущих, нержавеющих и другие специальных сталей, так как такая высокая температура нагрева под закалку быстрорежущей стали необходима для того, чтобы полнее растворить избыточные карбиды и больше перевести их в твердый раствор хрома, вольфрама, ванадия и других легирующих элементов, входящих в состав стали. Так сталь 40Г2 не является такой сталью, то достаточно нагрев произвести до температуры выше критической точки Ас3 на 30 — 50 о С. Но если все таки нагрев сделать выше, чем нужно, то это может привести к короблению детали, обезуглероживанию поверхности, росту зерна, а также к возможности образований трещин.
Как и для стали 40Х выдержку не делают длительной чтобы не произошел рост зерна, так как это может привести к пониженным прочностным свойствам.
При высоких скоростях охлаждения (выше критической) диффузионный распад аустенита подавляется — аустенит претерпевает только мартенситное превращение. Мартенсит представляет собой пересыщенный твердый раствор внедрения углерода в б-железе такой же концентрации, как у исходного аустенита. Как правило, при закалке не весь аустенит превращается в мартенсит, и структура закаленной стали представляет собой мартенсит и остаточный аустенит.
Принцип нагрева и выдержки под отпуск практически такой же как и для предыдущей стали.
Марганцовистая сталь отличается отпускной хрупкостью, поэтому после отпуска ее быстро охлаждают в масле. В масле — что бы снизить закалочные напряжения. [7]
График режима термической обработки стали 40ХФА представлен на рисунке 4.3.
Рисунок 4.3 — График режима термической обработки стали.
Закалку для этой стали проводят с температур 850 — 880 o C (согласно ГОСТ 4543-71) для того чтобы получить структуру аустенита. Нагревают до такой температуры чтобы образовалась однородная мелкозернистая аустенитная структура.
Выдержку не делают длительной чтобы не произошел рост зерна, так как это может привести к пониженным прочностным свойствам.
Последующее охлаждение в масле со скоростью большей, чем критическая, обеспечивает получение мелкозернистого мартенсита.
Высокий отпуск обеспечивает наилучшее соотношение прочности и вязкости. В остальном принцип отпуска схож с предыдущими сталями.[7]
Сталь 40х13 — состав, свойства, способы обработки, применение
Сталь 40Х13 относится к группе жаропрочных легированных сплавов с высокой коррозионной стойкостью. Она не теряет свои качества и в условиях эксплуатации при повышенных температурах. Благодаря отличным механическим свойствам ее широко применяют в производстве недорогих кухонных ножей.
Характеристики
Удобство использования такого материала обусловлена ещё и тем, что сталь изготавливается в печи открытого типа с температурным режимом от 850 до 1200 градусов, поэтому материал полностью деформируется и может быть залит в совершенно различные формы. Переменность системы охлаждения и нагревания позволяет создать изделие без дефектов, трещин и каких-то неровностей.
Составляющие после закаливания:
- карбидные частицы,
- мартенситы,
- остаточные аустениты.
Последний элемент влияет на жёсткость полученной стали: чем выше температура закаливания, тем ниже жёсткость/твёрдость. Именно поэтому, если требуется сталь для ножей (мягкую сталь в ножах точить намного проще и удобнее), то идеальной температурой закаливания будет 1050 градусов и выше.
Состав материала
Расшифровка марки стали 40Х13 свидетельствует о ее химическом составе:
- первые цифры слева обозначают содержание углерода, главного элемента в сплаве, придающего ему твердость – 0,36-0,44%;
- следующий знак «Х» указывает на основную легирующую добавку – хром, концентрация которого составляет – 12-14%.
Хром придает сплаву устойчивость к воздействию среды, в которой она будет эксплуатироваться, при концентрации выше 13% делает его нержавеющим. Он также влияет на механические свойства сплава и его структуру. По химическому составу сталь 40Х13 относится к среднеуглеродистым сплавам группы Х13 и имеет соответствующее содержание других легирующих элементов;
- кремния – не более 0,8%;
- марганца – 0,5-0,8%;
- меди и никеля – по 0,3%.
Никель повышает прочность и пластичность материала, кремний увеличивает упругость и показатель электрического сопротивления. Как и в других сплавах на основе железа, в нем присутствуют небольшие примеси:
Характеристики, применение стали 40Х13 устанавливается ГОСТом 5632-72, который распространяется на тонколистовой жаропрочный прокат. Сортамент, выпускаемый металлургической промышленностью, состоит:
- из прутка с ГОСТом 18907-73;
- прокатного листа, ГОСТ – 5582-75;
- проволоки с ГОСТом 18143-72.
Импортные аналоги выпускаются с маркировкой:
- 420 – Соединенные Штаты;
- 1.4031 – Германия;
- 4С13 – Китай;
- SUS420J2 — Япония;
- X40Cr14 — Франция;
- 420S45 – Великобритания.
Физические и механические свойства
Химический состав определяет характеристики стали 40Х13:
- твердость после закалки НВ 10-1 – 460-550 МПа;
- предел кратковременной прочности – 55-880 МПа, в зависимости от назначения;
- предел текучести при 20о С – 910 МПа;
- относительное удлинение при разрыве – 10-15%;
- ударная вязкость – 59 Дж/см2;
- модуль упругости при 20 о С, Е 10-5 – 2,18 МПа;
- теплоемкость – 25 Вт/(м*град);
- плотность – 7650 кг/м3;
- удельное сопротивление при 20оС, R 109 – 590 Ом*м.
Исходный материал достаточно пластичен и хорошо поддается ковке и вальцеванию. При дальнейшей термической обработке изменяются внутренняя структура стали и ее механические свойства. После процессов закалки и низкого отпуска материал приобретает довольно высокую коррозионную устойчивость в обычных атмосферных условиях, слабокислых растворах и воде, не считая морской. Чтобы повысить стойкость к более агрессивным средам, поверхность изделий шлифуют.
Особенности термической обработки
Тепловая обработка металла заключается в совокупности последовательных операций по нагреву, выдержке и охлаждению стали при определенной температуре. От нее во многом зависят особенности внутренней структуры и свойства стали 40Х13. Поэтому температурные режимы процессов закалки и отпуска подбираются в зависимости от дальнейшего применения сплава.
Разные температурные режимы
Например, для требований ГОСТа 4543-71 сплав 40Х13 подвергается закалке при температуре 860 градусов. Операция проводится в масляной среде с последующим отпуском при 500 градусах. В итоге сплав приобретает высокие характеристики твердости и прочности на разрыв. Если температурный режим отпуска будет нарушен, снизится ударная вязкость.
Для отжига используют нагрев до 700-800 и последующее медленное охлаждение в печи до 500 градусов. Дальнейшее охлаждение проводится на воздухе. В этом случае образуется стабильная равновесная структура металла.
В интервале температур 850-1100 градусов демонстрирует хорошие технологические свойства при пластической деформации. При быстром нагреве и охлаждении возможно возникновение внутренних напряжений, образующих трещины. Однако при чересчур медленном охлаждении возрастает хрупкость сплава. Поэтому для ковки применяют режимы медленного нагрева до 830 градусов с последующим спокойным охлаждением в песке или печи.
Сталь, которая предназначена для изготовления хирургических инструментов, закаливают в режиме 1020-1040 градусов. Охлаждение производится в щелочи при 350 градусах. После такой обработки повышаются упругость и прочность изделий.
Закалка поверхностного слоя
Одним из видов термической обработки является нагрев поверхности деталей высокочастотными токами. Этот способ особенно удобен при закалке поверхностного слоя изделий. Она необходима для тех деталей, которые испытывают нагрузки трения и качения, в механизмах с элементами трубопроводной арматуры, если их толщина составляет более 15 мм. Поверхностная закалка токами высокой частоты позволяет увеличить твердость изделия до 36,5 HRC.
Виды механической обработки
Марка стали 40Х13 выдерживает разные виды механической обработки. Но при этом могут возникнуть определенные трудности:
- во время сверления происходит повышение прочности поверхностного слоя из-за дополнительного нагрева;
- при обработке на станке закручивается металлическая стружка, для удаления которой устанавливают специальные приспособления;
- снижается износоустойчивость режущей кромки из-за повышения температуры при соприкосновении с деталью;
- при заточке ножей появляется металлический наплыв, нарушающий равномерность поверхности кромки;
- сварка не входит в число доступных видов механической обработки.
Преимущества и недостатки
Главным преимуществом стали 40Х13 является высокая стойкость к коррозии, которая максимально увеличивает срок эксплуатации изделий. Изделия из этого сплава обладают множеством достоинств:
- высокими параметрами твердости, приближенными к максимальным;
- устойчивостью к ударным нагрузкам и деформациям;
- химической стойкостью;
- удобством в использовании;
- легкостью заточки инструментов;
- доступной стоимостью.
Среди недостатков материала можно отметить:
- возможность небольшой деформации при ударных нагрузках;
- подверженность воздействию агрессивных сред и высоких температур.
Несмотря на некоторые недостатки, присущие любому продукту, изделия из стали 40Х13 пользуются широким спросом на рынке.
Термообработка стали
Свои уникальные свойства, в частности, повышенную стойкость к коррозии, марка 40Х13 получает в результате сложной термической обработки.
После закалки, составляющими компонентами стали 40Х13 являются:
Надо отметить, что при температуре порядка 1050 ºC сталь теряет свою твердость. Это вызвано в первую очередь тем, при таком режиме растёт количество аустенита. Но при понижении температуры до 500 ºC твёрдость возвращается. Это обусловлено тем, что происходит удаление карбидов из структуры стали.
Финишная термообработка (закалка) производится при температуре 950 — 1000 ºC, с последующим охлаждением в масле или на воздухе. При соблюдении всех технологических режимов сталь получить требуемую твёрдость и коррозионную стойкость.
Марка 40Х13 – назначение
Коррозионно-стойкая жаропрочная сталь 40Х13 мартенситного класса используется для изготовления высокопрочных износостойких деталей, работающих в коррозионных средах или при температурах до 4500С – оси, втулки, пружины, корпусы, лопасти, цапфы, бандажи, турбин, рессоры, диски, иглы карбюраторов, крепеж, другие изделия. Стойкость к образованию окалины при длительном сроке эксплуатации до 6000С.
Технологические свойства стали 40Х13
Марка 40Х13 обладает хорошей технологичностью при проведении пластической деформации в горячем состоянии. Ее проводят при температуре от 850 до 1100 ºC. Но надо помнить что при резком нагреве, сталь может потерять ряд своих уникальных свойств, например, твердость. Именно поэтому процедуру нагрева необходимо проводить с небольшой скоростью. По достижении температуры 830 ºC можно выполнять прокат или ковку. Охлаждение стали необходимо также проводить медленно.
Сталь 40Х13 плохо подвергается холодной деформации.
Ряд характеристик коррозионно-стойкой и углеродистой стали во многом схожи, в частности, в твёрдости. Но они имеют различную микроструктуру и это приводит к появлению определённых сложностей в процессе механической обработки.
Основные сложности, возникающие при точении и фрезеровании стали марки 40Х13 это:
- упрочнение, возникающие в процессе резания;
- удаление отходов обработки;
- ускоренный износ режущего инструмента.
Дело в том, что при обработке 40х13 резанием, стружка не ломается как у большинства углеродистых сталей, а завивается в виде длинной стружки. Для решения этой проблемы на режущий инструмент устанавливают специальные приспособления — стружколомы.
Низкая теплопроводность хороша при использовании 40Х13 на практике, но создаёт определённые сложности при точении. То есть в месте обработки резко поднимается температура, вследствие чего происходит образование наклёпа и неравномерное упрочнение поверхности. Такое свойство стали приводит к снижению ресурса режущего инструмента и увеличению обработки детали.
Еще одно свойство 40Х13 — это наличие в ее составе карбидных и других соединений, имеющих микроскопический размер. Их наличие делает сталь неким подобием абразива, который выводит режущий инструмент из строя и это приводит к замедлению обработки.
Для эффективной обработки нержавейки применяют режущий инструмент, на поверхность которого наносят карбид вольфрама и другие упрочняющие покрытия.
Аналоги стали и область применения
4Х13 — старое название. Существуют зарубежные аналоги, отличающиеся чистотой сплава, отсутствием или наличием примесей.
Зарубежные аналоги разных поставщиков: американские AISI420, японские SUS420J2, французские X40Cr14, английские 420S45, итальянские X40Cr14, испанские F.3404, китайские 4C13, польские 4h23, чешские 17024. Все аналоги имеют похожие характеристики.
- Мерительный инструмент.
- Режущий инструмент.
- Предметы домашнего обихода.
- Медицинские инструменты.
- Валы.
- Пружины.
- Подшипники.
- Мерительные приспособления для ковочного производства.
- Детали компрессорных установок.
- Режущие ножи аппаратов для горячей штамповки.
Широкий круг потребителей отзывается об изделиях из данного материала положительно. Люди отмечают полное отсутствие ржавчины на всём протяжении работы с инструментом, а также высокую прочность. Производство этой марки занимает важное место в металлургии России, второе место по количеству объёмов, изготовляемых в год. Долговечность материала отмечают многие потребители. Прочность не заставляет покупателя мучиться над постоянной починкой и заточкой, если речь идёт о кухонном ноже, или над заменой различных деталей в механизмах. Грубо говоря, люди приобретают изделия из этого материала по следующим причинам:
- долговечность,
- высокая прочность,
- низкая стоимость.
Обрабатывать лезвия кухонных ножей из материала этой марки не составляет труда. Достаточно использовать обычный точильный камень, который должен быть в каждом доме. Металл отличается своей мягкостью (в пределах разумного), поэтому прикладывать много сил, чтобы его наточить, не приходится. Дополнительной фишкой является то, что изделие остаётся острым длительное время.
Нельзя не отметить, что изделия не нуждаются в тщательном уходе, разве что придётся их своевременно точить (если речь идёт про ножи). В остальном же изделие достаточно купить, а служить оно будет долго, главное — не работать с твёрдыми поверхностями, так как лезвие ножей достаточно сильно гнётся при серьёзных физических нагрузках.