Температура плавления стали ст3

Конструкционная сталь СТ3КП

Сталь СТ3КП относится к конструкционному типу, является кипящей, углеродистой. Она характеризуется стандартным качеством, используется для производства несущих конструкций, а также второстепенных элементов в строительстве, применяющихся при положительных температурах. Сплав очень популярен, для его получения используются конвертерные и мартеновские печи.

Расшифровка

Расшифровка стали СТ3КП в соответствии с Госстандартом 380-2005 содержит информацию:

  • СТ – сталь углеродистая обычного качества;
  • 3 – номер состава;
  • КП – кипящая.

Химический состав

Химический состав стали СТ3КП содержит:

Дополнительные элементы (хром, никель и пр.) содержатся в значительно меньшем количестве.

Технологические свойства

Легкосвариваемость материала позволяет использовать любой метод сварки. К основным показателям сплава, с помощью которых происходит деление на отдельные группы по прочности, относятся:

  • антикоррозионные свойства;
  • механические параметры;
  • свариваемость.

Если элемент, изготовленный из данной марки стали имеет толщину более 36 мм, то после проведения сварочных работ производится термическая обработка. Это обусловлено потребностью в снятии остаточных напряжений в зоне шва, которые образуются при локальном нагреве во время сварки.

Применение стали

Характеристики стали СТ3КП обеспечивают эффективность применения материала при изготовлении несущих и второстепенных конструкций, деталей машин и оборудования. Использовать ее можно исключительно при плюсовой температуре среды. Более универсальные изделия получают из проката 5 категории. Их можно применять при температуре -40/+425 градусов, а также при действии переменной нагрузки.

Шпунт Ларсена из СТ3КП

Создание сложных конструкций предполагает проведение термообработки в качестве заключительной стадии производства. Наибольшей популярностью пользуется отжиг, позволяющий снизить напряжения в элементах после сварки.

Область применения СТ3КП охватывает изготовление арматуры Ат-400С. Листы, произведенные из сплава, подвергают холодной штамповке без снижения технических характеристик. Наибольшее распространение получили корыта для сбора смазочно-охлаждающих жидкостей и масел, баки, крышки станков, кожухи и т.д.

Технические характеристики

К характеристикам стали СТ3КП относятся:

Стоимость стали составляет порядка 40 руб. за килограмм. Окончательная цена зависит от объема заказа и способа доставки. Материал обязательно должен соответствовать требованиям Госстандарта 380-71 и 380-2005. В комплекте с заказом поставляются документы о содержании компонентов в составе, прочности, временном сопротивлении, ударной вязкости стали СТ3КП.

Из данной марки изготавливают:

  • трубы и арматуру;
  • прокат;
  • катанки;
  • толстолистовой материал.

Чем отличается сталь СТ3КП от СТ3СП?

Рассматриваемая сталь является кипящей, а СТ3СП – спокойной. В первом случае речь идет о неокисленном продукте, в котором в большом количестве присутствуют примеси неметаллов. Второй сплав полностью раскислен, в нем практически отсутствуют шлаки и неметаллы.

Спокойная сталь не кипит при разливе, она однородная, легкосвариваемая, устойчивая к динамическим воздействиям. Однако стоимость ее выше.

Особенности производства

Рабочие параметры стали СТ3КП определяют на основании состава и процентного содержания компонентов в нем. Также важно учитывать способ производства материала.

В основе сплава лежит феррит, который представляет собой твердый раствор углерода и легирующих добавок. Чтобы прочностные показатели компонента увеличились, необходимо насытить его углеродом.

К нежелательным примесям относятся сера (0,05%) и фосфор (0,04%), которые отрицательно сказываются на прочности при нагреве и повышают хрупкость при охлаждении. Красноломкость – еще одно негативное свойство, которое появляется в результате образования сернистого зерна.

Марка стали СТ3КП подвергается обработке в мартеновских и конвертерных печах. Рабочие характеристики сплавов практически идентичны, но второй способ производства значительно дешевле.

Раскисление стали

Раскисление – это процесс, при котором из состава выводятся излишки кислорода. В результате материал становится более прочным и устойчивым к различным воздействиям. В качестве раскислителей в состав вводят алюминий и кремний, которые сразу превращаются в оксиды. Вокруг них начинают формироваться очаги кристаллизации, а структура становится мелкозернистой.

Свариваемость

Сталь СТ3КП не имеет ограничений по сварке, для этого могут применяться способы:

  • РДС;
  • ручная АДС;
  • ЭШС;
  • автоматическая под флюсом;
  • механизированная плавящимся электродом в среде СО2;
  • контактная.

Проведение сварочных работ с деталями толщиной более 36 мм потребует последующий отжиг.

Механическая обработка

При обработке деталей из марки стали СТ3КП потребуется тщательно подобрать режущий инструмент. Заточка и фрезеровка осуществляется элементами, изготовленными из твердых сплавов ВК8 и Т5К10. Нарезка резьбы осуществляется с помощью метчиков и плашек из Р18 и Р6М5. Токарные и фрезерные работы на станке предполагают использование смазочно-охлаждающих жидкостей. При ручной нарезке резьбы специалисты рекомендуют применять касторовое масло, что снизит трудозатраты при работе.

Скорость обработки выбирают на основании состава и характеристик сплава, рабочих параметров станка и типа обработки. При диаметре заготовки 60-100 мм можно применять токарный резец 16х25 мм. При глубине реза 3 мм скорость подачи должна составлять 0,7-1,2 мм/об, а вращения – 700 об/мин.

К наиболее распространенным аналогам СТ3КП относятся:

  • китайская А3;
  • европейская 1.0036;
  • японская SS400;
  • немецкая Fe360B;
  • американские К01804 и А283.

При покупке иностранного материала необходимо потребовать от продавца сертификаты соответствия российским требованиям.

Жаропрочные стали и сплавы

Жаропрочная сталь используется при изготовлении разных деталей, которые контактируют с агрессивными средами, при этом подвергаются значительным нагрузкам, вибрациям и высокому термическому воздействию. К примеру, сюда относятся следующие изделия: турбины, печи, котлы, компрессоры и т.п. Далее представлены характеристики термостойких, жаропрочных сплавов, классификация, марки, особенности их применения.

Жаростойкая сталь (или окалиностойкая) – металлический сплав, используемый в ненагруженном или слабонагруженном состоянии и способный на протяжении длительного времени в условиях высоких температур (более 550 ºС) сопротивляться газовой коррозии. Жаропрочные металлы – изделия, которые под высоким термическим воздействием сохраняют свою структуру, не разрушаются, не поддаются пластической деформации. Важная характеристика таких металлов – условный предел ползучести и длительной прочности. Жаропрочные сплавы могут быть жаростойкими, однако не всегда такими бывают, поэтому в агрессивных средах могут быстро повредиться по причине окисления.

Свойства жаростойких и жаропрочных сплавов

Для повышения жаростойкости используются легирующие добавки, которые также улучшают прочность металлов. Благодаря легированию на поверхности сплавов образуется защитная пленка, снижающая скорость окисления изделий. Основные легирующие элементы: никель, хром, алюминий, кремний. В процессе нагрева образуются защитные оксидные пленки (Cr,Fe)2O3, (Al,Fe)2О. При содержании 5–8 % хрома жаростойкость стали увеличивается до 700–750 градусов по Цельсию, 17 % хрома – до 1000 градусов, при 25 % хрома – до 1100 градусов.

Жаропрочные марки металлов – сплавы на основе железа, никеля, титана, кобальта, упрочненные выделениями избыточных фаз (карбидов, карбонитридов и др.). Жаропрочностью обладают хромоникелевые и хромоникелевомарганцевые стали. Под воздействием высоких температур они не склонны к ползучести (медленная деформация при наличии постоянных нагрузок). Температура плавления жаропрочной стали составляет 1400-1500 °С.

Классификация жаропрочных и жаростойких сплавов

При температуре до 300 ºС используется обычная конструкционная (углеродистая) сталь – прочный и термостойкий металл. Для работы в условиях свыше 350 ºС требуется применение жаропрочных металлов. Основные виды сплавов повышенной термостойкости и термопрочности:

  • Перлитные, мартенситные и аустенитные;
  • кобальтовые и никелевые сплавы;
  • тугоплавкие металлы.

К перлитным жаропрочным сталям относят котельные стали и сильхромы, содержащие малый процент углерода. Температура рекристаллизации материала повышается за счет легирования молибденом, хромом, ванадием. Сплавы характеризуются неплохой свариваемостью. Производство мартенситных сталей осуществляется с использованием перлитных и добавок хрома, закалки при 950–1100 ºС. Они содержат более 0,15 % углерода, 11-17 % хрома, небольшое количество никеля, вольфрама, молибдена, ванадия. Стали мартенситного класса устойчивы к воздействию коррозии в щелочных, кислотных растворах, повышенной влажности, в случае термообработки при 1050 градусах отличается высокой жаропрочностью.

Читать еще:  Температура плавления алюминия в домашних условиях

Жаропрочные аустенитные стали могут иметь гомогенную или гетерогенную структуру. В сплаве с гомогенной структурой, не упрочняемых термообработкой, содержится минимум углерода, много легирующих элементов, что обеспечивает сопротивление ползучести. Такие материалы подходят для применения при температуре до 500 °С. В гетерогенных твердых растворах, упрочняемых термообработкой, образуются карбидные, интерметаллидные, карбонитридные фазы, что обеспечивает применение жаропрочных сплавов под напряжением при температуре до 700 °С.

При температуре до 900 °C эксплуатируют никелевые и кобальтовые сплавы: они применяются при производстве турбин реактивных двигателей, являются лучшими жаропрочными материалами. Кобальтовые сплавы по жаропрочности немного уступают никелевым, являются более редкостным. Отличаются высокой теплопроводностью, коррозионной устойчивостью при высоких температурах, стабильностью структуры в процессе длительной работы.

Содержание никеля в никелевом сплаве составляет свыше 55 %, углерода 0,06-0,12 %. В зависимости от структуры различают гомогенные (нихромы), гетерогенные (нимоники) сплавы никеля. Нихромы, изготавливаемые на основе никеля, в качестве легирующей добавки содержат хром. Им свойственна не только жаропрочность, но и высокая жаростойкость. Нимоники состоят из 20 % хрома, 2 % титана, 1 % алюминия. Марки сплавов: ХН77ТЮ, ХН55ВМТФКЮ, ХН70МВТЮБ.

При температурах до 1500 градусов и выше могут работать жаропрочные сплавы из тугоплавких металлов: вольфрама, ниобия, ванадия и др.

Сталь представляет собой материал, в котором основными элементами становятся железо и углерод, а другие вещества включаются в состав для изменения эксплуатационных качеств или контролируются в определенном диапазоне. Довольно больше распространение получила сталь 3. Она применяется для производства самых различных заготовок. Сталь Ст3 многим известна по трубам, которые применяются при создании систем теплоснабжения. Характеристики стали и ее особенности, к примеру, химический состав определяют не только широкое распространение металла, но и определенные особенности термической обработки.

Химический состав

Каждая категория стали характеризуется своим определенным химическим составом. Он во многом определяет область применения создаваемых заготовок и сложности, которые возникают при термической обработке.

Химический состав стали Ст3 делает ее одним из самых распространенных материалов, которые можно встретить на рынке. Без этого металла сложно себе представить современные строительные работы.

Ключевыми моментами, которые касаются химического состава, назовем следующее:

  1. Как ранее было отмечено, основными химическими элементами являются железо и углерод. Первый элемент имеет концентрацию 97%, углерода всего 0,14-0,22%. Именно углерод определяет показатель твердости и некоторые другие физико-химические свойства структуры.
  2. В состав структуры включается относительно небольшое количество легирующих элементов. Основными элементами стали хром и никель, концентрация которых составляет 0,3%. В этой же концентрации в состав включается медь.

При большом количестве разновидностей сталей у рассматриваемой жестко контролируется концентрация вредных примесей, которыми являются фосфор и сера. Кроме этого, в состав в большой концентрации входит азот, на который приходится около 0,1 массы.

Физические и механические свойства

Сталь Ст3, характеристики которой будут рассмотрены подробно, применяется в качестве основы при изготовлении просто огромного количества различных заготовок. Это можно связать с уникальными физическими и механическими свойствами. Механические свойства стали Ст3, которые контролируются при выпуске заготовок, следующие:

  1. Временное сопротивление.
  2. Предел текучести.
  3. Степень изгиба под воздействием большого усилия.
  4. Относительное удлинение.
  5. Ударная вязкость при определенной температуре.

Наиболее важные технические характеристики углеродистой стали 3 следующие:

  1. Поверхность имеет твердость 131 МПа.
  2. Плотность стали неоднородная, вес также может варьироваться в большом диапазоне.
  3. Свариваемость не характеризуется какими-либо ограничениями.
  4. К отпускной хрупкости структура не склонна.

Рассматриваемые свойства стали 3 определяют ее широкое распространение именно в сфере строительства. Большое распространение получил и различный прокат, который применяется при механической обработке.

Расшифровка марок Ст3

Провести расшифровку любой марки можно в соответствии с установленными стандартами и нормативной документации. Обозначение стали по ГОСТ позволяет при расшифровке марок определить основные качества. ГОСТ 380 определяет наличие следующих разновидностей металла:

Стоит учитывать, что индексы должны применяться при любой маркировке.

Свойства различных марок Ст3

Марка материала может расшифровываться следующим образом:

  1. СТ – обозначение, которое указывает на обыкновенное качество углеродистой стали. Примером назовем Ст3сп5.
  2. 3 – цифра, являющаяся условным номером марки сплава. В зависимости от концентрации углерода могут применяться цифры в пределе о 0 до 6.
  3. Г – в некоторых случаях может применяться подобный символ для обозначения марганца. Определенный тип стали, к примеру, Ст3гпс имеет в составе марганец 0,8%.
  4. Сп – степень раскисления материала. При рассмотрении Ст3пс5 можно сказать, что структура полуспокойная, но при этом степень раскисления достаточно высокая. Обозначение «пс» применяется для полуспокойных, «кп» — кипящих сплавов.

Расшифровывается Ст3кп2 подобным образом относительно недавно. Ранее использовались другие стандарты при маркировке. Кроме этого, ранее деление металла проводилось на несколько различных групп.

Скачать ГОСТ 380-2005

Применение стали Ст3

Рассматривая различные марки стали нужно учитывать тот момент, что они классифицируются по степени раскисления. Этот химический процесс предусматривает удаление с состава кислорода. Слишком большая концентрация кислорода определяет снижение физических и механических свойств.

Классификация проводится следующим образом:

  1. Спокойная характеризуется тем, что в состав входит от 0,16 до 0,3% кремния.
  2. Полуспокойная имеет средний показатель концентрации рассматриваемого элемента.
  3. Кипящая отличается по химическому составу от спокойной тем, что в составе содержится кремния не менее 0,05%.

Маркируется материал Ст3 соответствующим образом. Для проведения химического процесса могут использоваться различные вещества.

Стоит учитывать, что спокойная обходится намного дороже других вариантов исполнения. Это можно связать со следующими моментами:

  1. Структура однородная, за счет чего повышается степень защиты материала от воздействия окружающей среды.
  2. В состав входит небольшое количество кислорода, что и определяет высокие эксплуатационные качества.

При использовании спокойной стали могут изготавливать следующие изделия:

  1. Прокат листового и фасонного типа.
  2. Арматура и детали, которые можно применять для создания трубопровода. Для транспортировки теплоносителя или газа, другой среды могут применятся различные трубы. Для того чтобы они выдерживали высокую нагрузку и воздействие окружающей среды при изготовлении должны применять материалы, обладающие прочностью и твердостью. Кроме этого, уделяется внимание и себестоимости, так как слишком дорогие сплавы могут быть менее практичными в применении. Сталь 3 подходит в большей степени для изготовления подобных изделий.
  3. Основные и второстепенные элементы, применяемые при изготовлении подвесных конструкций и железнодорожных элементов. В железнодорожной отрасли наиболее востребованы металлы, которые имеют невысокую стоимость и высокие эксплуатационные качества. За счет больших размеров подвесных конструкций цена одного квадратного метра также имеет большое значение.

Полуспокойная разновидность стали, применение которой также весьма широкое, в составе имеет около одного процента кислорода. За счет этого характеристики твердости и пластичности выражены в меньшей степени. При применении стали 3 могут изготавливаться:

  1. Трубы. Подобный материал сегодня получил самое широкое распространение. Трубы применяются при создании отопительной системы, в качестве несущих элементов. Стоит учитывать, что трубы могут иметь различный диаметр и толщину создаваемых стенок. Рассматриваемый сплав обладает относительно невысокой коррозионной стойкостью, поэтому нужно проводить защиту поверхности от воздействия повышенной влажности.
  2. Листовой прокат также применяется крайне часто, особенно при изготовлении корпусных изделий или обшивке несущих конструкций. Толщина может варьировать в большом диапазоне. Прокат листовой может применяться при холодной гибке или штамповке. Эти два процесса характеризуются высокой производительностью. Именно поэтому рассматриваемый сплав получил самое широкое распространение.
  3. Квадраты и уголки часто применяются для получения несущих конструкций. Они характеризуются высокой прочностью, так как грани существенно повышают жесткость и могут распределять нагрузку. Уголки и квадраты характеризуются большим количеством параметров: толщина листа, угол расположения плоскостей, длина и форма поперечного сечения. Область применения – изготовление несущих конструкций и усиление уже существующих конструкций.
  4. Различные шестигранники. Они также получили широкое распространение, могут применяться в самых различных отраслях промышленности.

Лист стальной Ст3 горячекатаный

Кипящие сплавы получили широкое распространение по причине доступности. По стоимости они самые доступные, при этом получаемая структура характеризуется высокой степенью обрабатываемости. Кроме этого, сплав хорошо поддается термической обработке, однако эксплуатационные качества по причине высокой концентрации кислорода снижены.

Читать еще:  Температура плавления силумина

В заключение отметим, что многие аналоги стали 3 обладают соответствующими эксплуатационными характеристиками. Зарубежные производители применяют собственные стандартны при маркировке. При этом концентрация вредных примесей выдерживается в определенном диапазоне. Применение самых современных технологий позволяет снизить количество фосфора и серы в составе, за счет материал становится более прочным и менее хрупким. В некоторых случаях проводится добавление легирующих элементов.

Температура плавления (температура ликвидус) — это температура, при которой вещество переходит в полностью жидкое состояние. Температура затвердевания (температуру солидус) — это такая температура, при которой вещество переходит полностью в твердое состояние.

Для чистых веществ (элементов) температуры ликвидус и солидус совпадают. Для растворов же, к которым в том числе относятся сталь и чугун, существует, так называемый, температурный интервал кристаллизации, в котором одновременно сосуществуют твердая и жидкая фазы.

Расчет температуры плавления и затвердевания стали

Температуры плавления и затвердевания стали зависят от ее состава.

Как правило при расчете TL и TS делают допущение об аддитивности влиянии легирующих и примесей на значения этих величин. При этом изменение температуры плавления/затвердевания, обусловленное наличием того или иного элемента, рассчитывают как

TL/S сплав = Т — ΣdTL/Si
где TL/Sсплав — температура ликвидус / солидус сплава, К;
Т — температура плавления растворителя (железа), К;
dTL/Si — снижение TL и TS, обусловленное наличием в металле i-го элемента, К.

Влияние различных элементов на температуру плавления и кристаллизации определяют по диаграммам состояния для каждого элемента i (использованные диаграммы состояния приведены ниже в таблице).

При этом допускали, что их влияние на рассматриваемые величины носит линейный характер, т.е.

dTL/Si = kL/Si·[i]где kL/Si — средний коэффициент наклона линии ликвидус (солидус) на диаграмме состояния в определенном интервале концентраций рассматриваемого элемента, К/%;
[i] — концентрация элемента i, % масс.

kL/Si = <(TL/Si)а - (TL/Si)b>/<[i]а - [i]b>
где (TL/Si)а и (TL/Si)b — температура ликвидус/солидус расплава при концентрации элементаi в нем равной [i]а и [i]b, соответственно, К.

Конкретные значения kL/S i были получены следующим образом:

kLC = (1539 — 15. )/. = 64 kSC = (1539 — . )/. = 356 при С 0,1

kLCr = (1539 — 1515)/22 = 1,09 kSCr = (1539 — 1505)/22 = 1,54

kLNi = (1539 — 1449)/50 = 1,80 kSNi = (1539 — 1436)/50 = 2,06

kLMo = (1539 — 1460)/33 = 2,39 kSMo = (1539 — 1450)/33 = 2,70

kLV = (1539 — 1475)/30 = 2,13 kSV = (1539 — 1468)/30 = 2,37

kLS = (1539 — 1530)/0,20 = 45,0 kSS = (1539 — 1365)/0,20 = 870

если содержание серы более 0,2, то dTSS= 1539 — 1365 = 174

kLP = (1539 — 1400)/5 = 27,8 kSP = (1539 — 1050)/5 = 97,8

Влияние углерода на температуры ликвидус и солидус целесообразно рассчитывать с учетом изображенных на рисунке ниже рагрессионных выражений.

Таким образом, температура ликвидус и солидус рассчитываются как

Следует подчеркнуть, что величина TS не представляет практического интереса, так как в процессе кристаллизации происходит значимое перераспределение элементов между жидкой и твердой фазой, в результате которого жидкость обогащается ликватами, прежде всего углеродом, серой и фосфором (чем определяется способность элементов к ликвации Вы можете узнать здесь), что, естественно, снижает температуру затвердевания, поэтому температура, при которой разливаемый металл полностью затвердевает в большинстве случае составляет величину гораздо меньшую, чем расчетное значение TS.

Ниже приведена работа А. Н. Смирнова, более подробно рассматривающая вопрос определения температуры плавления и затвердевания стали

Расчет температуры ликвидус стали

А. Н. Смирнов, Л. Неделькович, М. Джурджевич, Т. В. Чернобаева и 3. Оданович

Донецкий государственный технический университет (Украина) и Белградский университет (Югославия)

Точная оперативная информация о температуре ликви­дус стали имеет большое практическое значение, так как в зависимости от имеющегося в цехе оборудования для внепечной обработки именно эта температура оп­ределяет температурный режим от выпуска до оконча­ния разливки плавки, особенно на МНЛЗ. Это дает воз­можность работать с оптимально низкой степенью пе­регрева и обеспечивает мелкозернистую литую струк­туру и высокое качество заготовки. Известно, что из­мерение температуры ликвидус (TL) не вызывает значительных затруднений. Однако заданный химиче­ский состав стали достигается к концу внепечной обра­ботки перед началом непрерывной разливки, что суще­ственно ограничивает возможности использования экспериментальных данных (записи кривой охлажде­ния). Поэтому для оперативного определения значения TL целесообразно проводить расчеты с использовани­ем данных о химическом составе стали.

Между тем, выбор какого-либо универсального метода расчета температуры ликвидус на практике вызывает значительные затруднения, так как рекоменда­ции специалистов, занимающихся решением этой про­блемы, довольно противоречивы. Сравнение точности и надежности методов расчета TL для стали различных марок выполнено в настоящей работе.

Большая часть известных методов расчета темпе­ратуры ликвидус углеродистой и легированной стали основана на полиномных выражениях, которые в обобщенном виде могут быть представлены следую­щим образом [1. 9]:

где Tплав Fe — температура плавления чистого железа (в соответствии с большей частью известных рекомен­даций Tплав Fе = 1539 °С); а — коэффициент приведе­ния температуры плавления чистого железа (вводится в случае принятия значения температуры плавления железа отличного от приведенного выше); а1 и а2 — коэффициенты значимости 1-го и 2-го порядка для со­ответствующего элемента i, содержащегося в стали данной марки; [i] — содержание элемента i в стали данной марки, %.

В качестве основы выражений такого типа приня­та гипотеза о том, что каждый из химических элемен­тов влияет на снижение температуры ликвидус железа независимо один от другого. При этом результирую­щее влияние всех растворенных в стали элементов на снижение температуры ликвидус может быть получе­но на основании двойных диаграмм состояния Fe-Хi,. Поэтому эти выражения различаются только тем, ка­ким образом аппроксимируется линия ликвидус в би­нарной диаграмме со стороны железа. В простейшем случае она заменяется касательной прямой на линию ликвидус со стороны железа, а выражение для темпе­ратуры ликвидус упрощается до полинома первого по­рядка. Подобные выражения, как видно из табл. 1 [1. 4], различаются по значениям коэффициентов аi и принятой температуре плавления железа.

Влияние изменения концентрации каждого хими­ческого элемента на снижение температуры плавления железа может быть также учтено описанием линии ли­квидус с помощью полинома второго порядка или вписыванием ломаной линии в кривую значений тем­пературы ликвидус. Причем неодинаковый наклон звеньев ломаной линии в концентрационных проме­жутках учитывает влияние собственной концентрации каждого элемента на снижение температуры плавле­ния железа. В качестве иллюстрации в табл. 1 приве­дены данные работ [5. 7], где учитывается только концентрационная зависимость влияния углерода, и работ [8, 9], где эта концентрационная зависимость выражается и для ряда других элементов в стали. При­веденными в табл. 1 данными можно пользоваться только в тех концентрационных областях, в которых при затвердевании образуется твердый раствор.

Однако средние квадратичные отклонения σ (табл. 1) не могут служить обобщенным критерием оценки достоверности и применимости каждой из формул, так как специалисты обычно используют не­сколько отличные в техническом исполнении методы и приборы для измерения температуры ликвидус ста­ли. По-видимому, такая оценка должна проводиться для данных, которые получены в примерно одинако­вых условиях при достаточно надежном измерении температуры ликвидус применительно к большому массиву марок стали.

В настоящей работе были отобраны результаты измерений температуры ликвидус для стали 87 марок по данным А.А. Howe [10]. Химический состав стали некоторые из этих марок и результаты измерений тем­пературы ликвидус приведены в табл. 2. При этом для стали состава 1-10 температуру ликвидус определя­ли путем термического анализа образца массой 400 г, для стали состава 11-20 — одновременно путем тер­мического и дифференциального термического анали­за образца массой 40 г.

Было определено, что расчетные значения темпе­ратуры ликвидус в большей части случаев превышают экспериментальные данные. С уменьшением темпера­туры ликвидус, которое соответствует росту содержа­ния углерода и легирующих элементов в стали, вели­чина разброса расширяется.

Результаты оценки достоверности расчетов темпе­ратуры ликвидус (табл. 3) показывают, что использо­вание предложенных формул не отличается высокой степенью точности, так как даже наиболее точные из результатов расчетов имеют среднее квадратичное от­клонение около ±2,5, соответствующее полосе раз­броса ±7,5 °С.

Читать еще:  При какой температуре плавится металл

По мнению авторов настоящей статьи, такое от­клонение расчетных данных от экспериментальных может быть вызвано в основном тем, что эти формулы не учитывают характер взаимодействия отдельных хи­мических элементов при определенной их концентра­ции. Из работ [11-13] известно, что, если при нали­чии какого-либо другого элемента или с увеличением собственной концентрации коэффициент активности данного элемента изменяется, то и его влияние на TL стали должно соответственно изменяться.

Возрастание влияния коэффициента активности углерода с повышением его концентрации в стали проиллюстрировано на примере стали, содержащей 1,48 % С (табл. 4). При таком увеличении коэффици­ента активности углерода его действительное влияние на снижение температуры ликвидус, определенное экспериментально, оказывается значительно боль­шим, чем это можно принять по результатам расчетов по известным формулам. Поэтому в большей части случаев расчетные значения TL заметно превышают экспериментальные. В противном случае, если сталь содержит элемент, снижающий активность углерода, и соответственно углерод уменьшает активность этого элемента в стали (Б, табл. 4, марганцовистая сталь), действительное снижение температуры ликвидус, определенное экспериментально, меньше, чем рассчитайное по формулам, не учитывающим взаимное влия­ние активностей, что выражается в положительном от­клонении разностей между экспериментальными и расчетными значениями TL. Более сложный пример (В, табл. 4) для стали с высоким содержанием никеля иллюстрирует большие отклонения разностей между экспериментальными и расчетными значениями TL в положительную сторону практически по всем форму­лам, что, по-видимому, является следствием неадек­ватного описания линии ликвидус в бинарной системе Fe-Ni.

Следует отметить, что рассмотрены (табл. 4) толь­ко двухкомпонентные и трехкомпонентные системы, причину отклонения расчетных экспериментальных значений TL в которых можно достаточно аргу­ментированно объяснить. Наибольший разброс от­клонений значений TL наблюдается для легирован­ной стали многокомпонентного состава, где взаимо­действие между элементами более сложное. Следо­вательно, для стали такого состава отклонения, вы­званные неадекватным учетом эффектов таких взаи­модействий на снижение температуры ликвидус, ме­нее предсказуемы.

Как видно из табл. 2, для группы углеродистой и низколегированной стали dTср имеет отрицательное значение и по абсолютному значению в каждом от­дельном случае большеdTmin. В более 90 % случаев значения dTmin распределены по нормальному закону в интервале ± 2 °С около фактической температуры ликвидус, а около 70 % — в интервале ± 1 °С.

Таблица 1. Коэффициенты a, а1 и a2 характеризующие степень влияния содержащихся в стали химических элементов на снижение температуры ликвидус*

Виды и марки стали

Сталь. Виды и марки стали. Их применение.

Сталь — это сплав железа и углерода с другими элементами, содержание углерода в нём не более 2,14%.

Наиболее общая характеристика — по химическому составу сталь различают:

углеродистую сталь (Fe – железо, C – углерод, Mn – марганец, Si — кремний, S – сера, P – фосфор). По содержанию углерода делится на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую. Углеродистая сталь предназначена для статически нагруженного инструмента.

легированную сталь — добавляются легирующие элементы: азот, бор, алюминий, углерод, фосфор, кобальт, кремний, ванадий, медь, молибден, марганец, титан, цирконий, хром, вольфрам, никель, ниобий.

По способу производства и содержанию примесей сталь различается:

сталь обыкновенного качества ( углерода менее 0,6%) — соответствует ГОСТ 14637, ГОСТ 380-94. Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6. Буквы «Ст» обозначают сталь обыкновенного качества, цифры указывают на номер маркировки в зависимости от механических свойств. Является наиболее дешёвой сталью, но уступает по другим качествам.

качественная сталь ( углеродистая или легированная ) — ГОСТ 1577, содержание углерода обозначается в сотых долях % — 08, 10, 25, 40, дополнительно может указываться степень раскисления и характер затвердевания. Качественная углеродистая сталь обладает высокой пластичностью и повышенной свариваемостью.

Низкоуглеродистые качественные конструкционные стали характеризуются невысокой прочностью и высокой пластичностью. Из листового проката стали 08, 10, 08кп изготавливают детали для холодной штамповки. Из сталей 15, 20 делают болты, винты, гайки, оси, крюки,шпильки и другие детали неответственного назначения.

Среднеуглеродистые качественные стали (ст 30, 35, 40, 45, 50, 55) используют после нормализации и поверхностной закалки для изготовления таких деталей, которые обладают высокой прочностью и вязкостью сердцевины (оси, винты, втулки и т. д.)

Стали 60 — стали 85 обладают высокой прочностью, износостойкостью, упругими свойствами. Из них изготавливают крановые колёса, прокатные валки, клапаны компрессоров, пружины, рессоры и т.д.

высококачественная — сложный химический состав с пониженным содержанием фосфора и серы — по ГОСТу 19281.

Также сталь делится по применению:

а) строительная сталь — углеродистая обыкновенного качества. Обладает отличной свариваемостью. Цифра обозначает условный номер состава стали по ГОСТу. Чем больше условный номер, тем больше содержание углерода, тем выше прочность стали и ниже пластичность.

Ст0-3 — для вторичных элементов конструкций и неответственных деталей (настилы, перила, подкладка,шайбы)

Ст3 используют для несущих и ненесущих элементов сварных и несварных конструкций и деталей, которые работают при положительных температурах. ГОСТ 380-88.

Стандартом качества предусмотрена сталь с повышенным количеством марганца (Ст3Гсп/пс, ст5Гсп/пс).

б) конструкционная сталь — ГОСТ 1050

Углеродистые качественные конструкционные стали используются в машиностроении, для сварных, болтовых конструкций, для кровельных работ, для изготовления рельсов, железнодорожных колёс, валов, шестерен и других деталей грузоподъёмников.Ц ифры в маркировке означают содержание углерода в десятых долях процента.

Ст20 — малонагруженные детали, такие как валики, копиры, упоры,

Ст35 — испытывающие небольшие напряжения (оси, тяги, рычаги, диски, траверсы, валы),

Ст45 (ст40Х) — требующие повышенной прочности (валы, муфты, оси, зубчатые рейки)

Конструкционные легированные стали используют для гусениц тракторов, изготовления пружин, рессор, осей, валов, автомобильных деталей, деталей турбин и др.

в) инструментальная сталь — применяется для режущего инструмента, быстрорежущая сталь для холодного и горячего деформирования материла, для измерительных инструментов, на производство молотков, долот, стамесок, резцов, свёрлов, напильников, бритв, рашпилей.

У7, У8А (цифра- десятые доли процента по содержанию углерода). Углеродистые стали выпускают качественными и высококачественными. Буква «А» означает высококачественную углеродистую инструментальную сталь.

г) легированная сталь — универсальная сталь, содержащая специальную примесь. Содержание кремния более 0,5%, марганца более 1%. ГОСТ 19281-89. Если содержание легирующего элемента превышает 1 — 1,5%, то оно указывается цифрой после соответствующей буквы.

низколегированная сталь — где легирующих элементов до 2,5% (09Г2С, 10ХСНД, 18ХГТ). Низколегированную сталь можно использовать в условиях крайнего севера, от -70 град С. Низколегированную сталь отличает большая прочность за счёт более высокого предела текучести,что важно для ответственных конструкций.

среднелегированная (2,5 -10%),

высоколегированная (от 10 до 50%)

Сталь 09Г2С применяется для паровых котлов, аппаратов и ёмкостей, работающих под давлением и температурой от минус 70, до плюс 450град; её используют для ответственных листовых сварных конструкций в химическом и нефтяном машиностроении, судостроении.

Сталь 10ХСНД используют для сварных конструкций химического машиностроения, фасонных профилей в сдостроении, вагоностроении.

18ХГТ применяют для деталей, работающих на больших скоростях при высоком давлении и ударных нагрузках.

д) сталь особого назначения — сталь с особыми физическими свойствами. Она применяется в электротехничсеской промышленности и точном судостроении.

На свариваемость стали влияет степень её раскисления. По степени раскисления сталь классифицируется:

спокойная сталь (ст3сп) — полностью раскисляется с минимальным содержанием шлаком и неметаллических примесей,

полуспокойная сталь (ст3пс) — по характеристикам качества схожа со спокойной сталью,

кипящая сталь (08кп) — неокисленная сталь с высоким содержанием неметаллических примесей. ГОСТ 1577.

В зависимости от нормируемых характеристик, сталь подразделяют на категории: 1, 2, 3, 4, 5. Категории обозначают химический состав, механические свойства при растяжении, ударную вязкость)

Например, категория 1 — химический состав не нормируемый, категория 3 — нормируется ударная вязкость при температуре +20. Для марки ст0 не нормируется ни химический состав, ни предел текучести.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]