Содержание
- Алюминий сплавы и марки
- Виды и свойства алюминиевых сплавов
- Физические параметры алюминиевых сплавов
- Виды алюминиевых сплавов
- Марки алюминиевых сплавов
- Что такое алюминиевый сплав?
- Алюминиевые сплавы
- Характеристики алюминиевых сплавов
- Сферы применения
- Классификация
- Деформируемые алюминиевые сплавы
- Литейные алюминиевые сплавы
- Принципы маркировки
- Применение алюминия
- Судостроение
- Железнодорожный транспорт
- Автомобильный транспорт
- Строительство
- Нефтяная и химическая промышленность
- Алюминиевые сплавы
- Физические параметры алюминиевых сплавов
- Виды алюминиевых сплавов
- Марки алюминиевых сплавов
Марки алюминия и их применение
Алюминий сплавы и марки
Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
Алюминий сплавы и марки труба, лента, проволока, лист, круг Алюминий сплавы и марки
Свойства и полезная информация:
Описание алюминия: Алюминий не имеет полиморфных превращений, обладает решеткой гранецентрированного куба с периодом а=0,4041 нм. Алюминий и его сплавы хорошо поддаются горячей и холодной деформации — прокатке, ковке, прессованию, волочению, гибке, листовой штамповке и другим операциям.
Все алюминиевые сплавы можно соединять точечной сваркой, а специальные сплавы можно сваривать плавлением и другими видами сварки. Деформируемые алюминиевые сплавы разделяются на упрочняемые и неупрочняемые термической обработкой.
Все свойства сплавов определяют не только способом получения полуфабриката заготовки и термической обработкой, но главным образом химическим составом и особенно природой фаз — упрочнителей каждого сплава. Свойства стареющих алюминиевых сплавов зависят от видов старения: зонного, фазового или коагуляционного.
На стадии коагуляционного старения (Т2 и ТЗ) значительно повышается коррозионная стойкость, причем обеспечивается наиболее оптимальное сочетание характеристик прочности, сопротивления коррозии под напряжением, расслаивающей коррозии, вязкости разрушения (К1с) и пластичности (особенно в высотном направлении).
Состояние полуфабрикатов, характер плакировки и направление вырезки образцов обозначены следующим образом — Условные обозначения проката из алюминия:
М — Мягкий, отожженный
Т — Закаленный и естественно состаренный
Т1 — Закаленный и искусственно состаренный
Т2 — Закаленный и искусственно состаренный по режиму, обеспечивающему более высокие значения вязкости разрушения и лучшее сопротивление коррозии под напряжением
ТЗ — Закаленный и искусственно состаренный по режиму, обеспечивающему наиболее высокие сопротивления коррозии под напряжением и вязкость разрушения
Н — Нагартованный (нагартовка листов сплавов типа дуралюмии примерно 5—7 %)
H1 — Усиленно нагартованный (нагартовка листов примерно 20 %)
ТПП — Закаленный и естественно состаренный, повышенной прочности
ГК — Горячекатаные (листы, плиты)
Б — Технологическая плакировка
А — Нормальная плакировка
УП — Утолщенная плакировка (8 % на сторону)
Д — Продольное направление (вдоль волокна)
П — Поперечное направление
В — Высотное направление (толщина)
X — Хордовое направление
Р — Радиальное направление
ПД, ДП, ВД, ВП, ХР, РХ — Направление вырезки образцов, применяемое для определения вязкости разрушения и скорости роста усталостной трещины. Первая буква характеризует направление оси образца, вторая — направление плоскости, например: ПВ — ось образца совпадает с шириной полуфабриката, а плоскость трещины параллельна высоте или толщине.
Анализ и получение проб алюминия: Руды. В настоящее время алюминий получают только из одного вида руды — бокситов. В обычно используемых бокситах содержится 50—60% А12О3, 2 кг, лежащих в окружности радиусом 1 м, откалывают маленькие кусочки и отбирают в лопату. Недостающий объем заполняют мелкими частицами материала, взятыми с боковой поверхности опробуемого конуса.
Отобранный материал собирают в плотно закрывающиеся сосуды.
Плавка алюминия: В зависимости от масштабов производства, характера литья и энергетических возможностей плавку алюминиевых сплавов можно производить в тигельных печах, в электропечах сопротивления и в индукционных электропечах.
Плавка алюминиевых сплавов должна обеспечивать не только высокое качество готового сплава, но и высокую производительность агрегатов и, кроме того, минимальную стоимость литья.
Наиболее прогрессивным методом плавки алюминиевых сплавов является метод индукционного нагрева токами промышленной частоты.
Технология приготовления алюминиевых сплавов слагается из тех же технологических этапов, что и технология приготовления сплавов на основе любых других металлов.
Загрузка шихты при плавке алюминиевых сплавов производится в следующем порядке.
1. При проведении плавки на свежих чушковых металлах и лигатурах в первую очередь загружают (полностью или по частям) алюминий, а затем растворяют лигатуры.
2. При проведении плавки с использованием в шихте предварительного чушкового сплава или чушкового силумина в первую очередь загружают и расплавляют чушковые сплавы, а затем добавляют необходимое количество алюминия и лигатур.
3. В том случае, когда шихта составлена из отходов и чушковых металлов, ее загружают в следующей последовательности: чушковый первичный алюминий, бракованные отливки (слитки), отходы (первого сорта) и рафинированный переплав и лигатуры.
Медь можно вводить в расплав не только в виде лигатуры, но и в виде электролитической меди или отходов (введение путем растворения).
Виды и свойства алюминиевых сплавов
Алюминиевые сплавы используются для изготовления разных предметов. Чистый металл не имеет достаточной механической прочности, устойчивости к коррозии. Поэтому металл непригоден для решения простейших бытовых задач. Комбинация с легирующими элементами позволяет получить вещество с другими свойствами.
Используются технологии, которые помогают повысить прочность, твердость, устойчивость к высокой температуре и коррозии. Некоторые добавки помогают уменьшить электропроводность, повысить плотность. Марганец и магний не влияют на эти характеристики.
Физические параметры алюминиевых сплавов
Перечислим физические свойства нескольких сплавов на основе алюминия:
- Соединение АД1 – технически чистое вещество, в котором присутствует 0,7% примесей. Добавки увеличивают устойчивость к воздействию внешних факторов, уменьшают пластичность и электропроводность вещества. Технический алюминий устойчив к химическому воздействию, превосходит по этим параметрам другие вещества. На поверхности материала присутствует тонкая оксидная прослойка. Низкое содержание примесей положительно воздействует на устойчивость к коррозии. Магний и марганец не изменяют эти свойства. Правка методом растяжения – заключительная процедура обработки детали из вещества марки АД1. Для этого используются роликоправильные машины. Марганец и магний помогают создавать крепкие детали, но уменьшает их пластичность.
- Марка АМц устойчива к коррозии. Детали прекрасно поддаются обработке газовой, аргонной, атомно-водородной и контактной сваркой. Материал прекрасно деформируется при любой температуре. После термообработки прочность не повышается. Изготавливаются детали в отожженном или горячем прессованном виде.
- AMr3, Amr2. Такие соединения не ржавеют, хорошо подвергаются обработке точечной, газовой, роликовой сваркой. После горячей деформации охладить сплав алюминия можно на воздухе. После термообработки характеристики прочности не повышаются. При изготовлении деталей используют два режима термообработки: низкий 273-350 градусов и высокий 360-420 градусов.
- АД31 отличается пластичностью, хорошей устойчивостью к окислению. После сварки материал не становится более подверженным ржавчине. Прочность повышается после термообработки.
Виды алюминиевых сплавов
Алюминий, а также сплавы на его основе создаются из металлической руды, которая делится на несколько видов:
- Первичная.
- Техническая.
- Литейная.
- Деформируемая.
- Антифрикционная.
По методу использования вещества делятся на деформируемые и литейные. Деформированные отличаются повышенной пластичностью после термообработки. Литейные могут хорошо заполнять формы для отливки.
Пластичные вещества отличаются устойчивостью к коррозии, хорошей свариваемостью. Прочность сплава из алюминия зависит от количества используемой меди. Если добавляется 6% вещества для легирования, устойчивость к механическим воздействиям увеличиваются приблизительно на 30 МПа, текучесть повышается на 20 МПа.
Показатель относительного удлинения немного снижается в таких условиях, но не превышает пределы 35%. Если количество магния превышает 6%, структура материала становится нестабильной, уменьшается устойчивость к коррозии. Чтобы улучшить характеристики, в соединение добавляют такие элементы:
Добавление меди и железа плохо сказываются на состоянии алюминиево-магниевых соединений. Показатель свариваемости и стойкости к воздействию ржавчины ухудшается.
Добавление марганца позволяет повышать пластичность. Для создания мелкозернистой структуры проводится легирование с помощью титана. Чтобы состояние вещества было стабильным, добавляется марганец. Кремний и железо являются главными примесями марганцевых соединений.
Добавки из алюминия, меди, кремния применяются при производстве втулочных подшипников, блоков цилиндров. Из-за твердой поверхности приработка требует продолжительных усилий.
После легирования медью повышается термостойкость. Даже низкоуглеродистая сталь не так устойчива к температурному воздействию. Такой продукт неустойчив к воздействию коррозии, поэтому требует обработки и полимеризации. Алюминиево-медное соединение модифицируется с помощью таких материалов:
Магний сильно повышает прочность металла, придаёт текучесть. Жаропрочность соединения увеличивается после добавления никеля и железа. Стимулируется процесс искусственного старения.
Добавление кремния помогает получить вещество, которое называется силумином. Качественные характеристики соединения повышаются небольшим количеством натрия и никеля. Такие материалы используются для декоративного литья, производства корпусов механизмов и деталей бытовой техники. Они применяются в таких отраслях, благодаря хорошим литейным характеристикам.
Алюминий, магний и цинк удобно обрабатывать, такой материал отличается устойчивостью к механическим воздействиям. Эти характеристики обеспечивает хорошая растворимость цинка и магния. Под воздействием холода такое свойство заметно снижается. Материал неустойчив к коррозии, поэтому требуется дополнительное легирование с помощью меди.
Марки алюминиевых сплавов
Различают три вида маркировки:
- Буквенно-цифровая.
- Обычная цифровая.
- Международный вариант.
Основной материал в сплаве на основе алюминия отмечается первой цифрой в соответствии с ГОСТом. Второе числовое обозначение определяет легирующую систему, которая использовалась. Дополнительные символы указывают на разновидность модификации.
Что такое алюминиевый сплав?
Материал добывают из бокситовой руды. Залежи такой породы есть в России, Америке, Франции и других странах. Алюминий и некоторые его сплавы отличаются мягкостью, устойчивостью к коррозии. Температура плавления составляет примерно 700 градусов. Плотность 2,7 г на кв. см. Вещество прекрасно проводит электричество и тепло, взаимодействует с кислородом. Показатель упругости – 7000 Мпа, прочность – 150 МПа. При использовании некоторых добавок понижается устойчивость к коррозии. Это происходит по причине повреждения оксидной пленки.
Алюминиевые сплавы
Среди всех сплавов своими эксплуатационными качествами выделяются алюминиевые. Их применяют при производстве летательных аппаратов, возведении домов, выпуске наземного транспорта и морских судов. При этом выделяют довольно много недостатков, которыми обладают алюминиевые сплавы: мягкость, не очень высокая прочный, относительно невысокая устойчивость к воздействию повышенной влажности. Однако всего несколько основных положительных качеств определяет широкое распространение алюминиевых сплавов в самых различных областях промышленности. Рассмотрим все особенности данного материала подробнее.
Характеристики алюминиевых сплавов
Сплавы на основе алюминия могут обладать самыми различными характеристиками, так как при их получении проводится смешивание различных примесей. Именно поэтому рассматривая механические свойства алюминиевых сплавов следует уделить внимание тому, какие именно элементы входят в состав.
Для начала отметим классификацию материалов, которые получаются при соединении меди и алюминия. Они делятся на три основные группы:
- Действующие элементы медь и алюминий.
- Действующие элементы медь, магний и алюминий.
- Сочетание меди, алюминия и магния с добавлением легирующих элементов (в основном марганца).
Последняя группа сегодня получила довольно большое распространение, так как температура плавления алюминиевых сплавов, входящих в нее, довольно высока. Сплавы последней группы называют дюралюминием.
Рассматривая дюралюминий уделим внимание нижеприведенным моментам:
- В состав данного сплава входят железо и кремний. В большинстве случаев подобные легирующие элементы воспринимаются как вещества, ухудшающие эксплуатационные качества. В данном случае железо способствует повышению жаростойкости, а кремний позволяет с высокой эффективностью провести старение.
- Входящие в состав магний и марганец повышают прочность. За счет их включения в состав стало возможно использовать дюралюминий при производстве обшивочных листов для высокоскоростных поездов и летательных аппаратов или самолетов.
Часто встречается сплав, представляющий собой сочетание алюминия и магния. Технические характеристики подобного алюминиевого сплава зависят от того, сколько магния в составе.
Среди основных особенностей можно отметить нижеприведенные моменты:
- С увеличением концентрации магния повышается прочность, но уменьшается коррозионная стойкость.
- Прирост магния на 1% приводит к повышению прочности примерно на 30 000 Па.
- В большинстве сплавов не более 6% магния. Это связано с тем, что слишком большая концентрация станет причиной покрытия всей поверхности коррозией. Также большая концентрация марганца становится причиной неоднородности структуры, неравномерная нагрузка может стать причиной появления трещины или другой деформации.
Сочетание алюминия с марганцем практически не подвергают термической обработке. Это связано с тем, что даже при соблюдении условий проведения закалки существенно изменить эксплуатационные качества сплава не получится. Плотность алюминиевого сплава может колебаться в достаточно большом диапазоне: от 2 до 4 грамм на кубический сантиметр.
Рассматривая слав, прочность которого имеет рекордные показатели, следует уделить внимание сплаву алюминия с цинком и магнием. При применении современных технологий производства можно добиться качеств, которые будут характерны для титана. Среди особенностей подобного сплава отметим:
- Термическая обработка становится причиной растворения цинка, за счет чего предел прочности алюминиевого сплава возрастает в несколько раз.
- Применять подобный материал в электрической промышленности нельзя, так как прохождение электричества становится причиной существенного снижения коррозионной стойкости.
- Коррозионная стойкость в некоторых случаях повышается путем добавления меди, но все же она становится низкой.
В литейной промышленности весьма большое распространение получили алюминиевые сплавы, которые в своем составе имеют кремний. Тот момент, что при термической обработке кремний отлично растворяется в алюминии, позволяет использовать металл при фасонном или формовочном литье. Получаемые изделия хорошо обрабатываются резанием, а также обладают повышенной плотностью.
Очень редко встречаются смеси алюминия и железа, а также никеля. Это связано с тем, что подобные элементы зачастую применяются исключительно как легирующие вещества.
Примером можно назвать то, что железо добавляется в состав для упрощения процесса отделения детали от формы. В состав могут добавляться титан, который существенно повышает показатель прочности.
Подводя итоги по характеристикам алюминиевых сплавов можно отметить нижеприведенные моменты:
- Предел текучести может варьироваться в достаточно большом диапазоне.
- Температура плавления алюминия может изменяться в зависимости от того, какие применялись легирующие вещества.
- Прочность материала можно существенно повысить.
- Некоторые легирующие элементы снижают коррозионную стойкость, улучшая другие эксплуатационные качества. Именно поэтому проводится покрытие поверхности защитными веществами.
Из-за легкости и прочности, а также относительно высокой коррозионной стойкости алюминиевые сплавы получили достаточно широкое применение. Альтернативных материалов, которые обладают подобными свойствами и низкой стоимостью, практически нет.
Сферы применения
Алюминий и алюминиевые сплавы получили самое широкое применение, что связано с основными эксплуатационными качествами. Их применение во многом зависит от состава. Примером назовем следующие моменты:
- Изначально сплавы стали применяться при изготовлении элементов дирижаблей или самолетов, что связано с легкостью и прочностью.
- Сегодня за счет того, что состав определяет плавление при достаточно высоких температурах, сплавы стали применять при изготовлении скоростных поездов. Для снижения их веса применяется алюминиевые сплавы. При движении на большой скорости поверхность нагревается, но при этом не деформируется.
- Машиностроительная, пищевая и легкая промышленность, сфера производства бытовой техничек и электроники – применение алюминиевого сплава весьма обширно.
Столь обширная сфера применения определена также тем, что процесс производства сплава весьма прост, получаемый материал не имеет высокой стоимости, а эксплуатационные качества могут быть изменены путем добавления различных легирующих элементов.
Классификация
Рассматривая виды алюминиевых сплавов следует отметить, что они могут классифицироваться по достаточно большому количеству признаков. Классификация алюминия его сплавов по типу вспомогательных элементов подразумевает выделение следующих основных групп:
- С добавлением присадок. В качестве присадки применяется просто огромное количество различных веществ, к примеру, магний, цинк, хром, кремний и другие.
- С добавлением интреметаллидов. Эту группу можно охарактеризовать добавлением соединением нескольких металлов, к примеру, меди и магния, лития и магния.
Специальные алюминиевые сплавы могут состоять из огромного количества элементов. Их добавление проводится для придания материалу особых эксплуатационных качеств.
В зависимости от выбранного метода металлообработки можно выделить:
- Деформируемые сплавы – твердые, из-за повышенной пластичности могут подвергаться обработки путем прессования или ковки. Для повышения эксплуатационных качеств может проводится дополнительная обработка.
- Литейные поступают на производство в жидком виде. Подобный материал легко поддается резке после отвердевания. Пример применения литейного сплава — изготовление корпусных деталей различной формы.
По степени прочности можно выделить несколько групп:
Кроме этого в отдельную группу принято выделять дуралюмины, которые обладают особыми эксплуатационными качествами.
Легкий алюминиевый сплав может иметь достаточно большое количество различных примесей. При этом химический состав отражается на маркировке.
Деформируемые алюминиевые сплавы
Довольно большое распространение деформируемых алюминиевых сплавов можно связать с тем, что при их применении процесс производства различных изделий существенно упрощается. Область применения следующая:
Деформируемые алюминиевые сплавы
В результате получаются различные заготовки или уже практически готовые детали с исключительными эксплуатационными качествами. После получения требующейся формы проводится отжиг, закалка или старение, которые позволяют существенно повысить показатель прочности. Данный типа алюминия применяют для получения труб, листа или профиля.
Литейные алюминиевые сплавы
Технологии получения деталей и заготовок путем литья применяются на протяжении многих лет. Они хороши тем, что позволяют получать самые различные формы, которые могут иметь сложные поверхности. Сплавы на основе алюминия могут переходить в текучее состояние при более низких температурах, чем другие металлы. Именно поэтому процесс изготовления различных деталей существенно упрощается.
Среди других особенностей материала данной группы отметим:
- После формирования устойчивой кристаллической решетки полученную поверхность достаточно легко подвергать механической обработке.
- Получаемые заготовки рассматриваемым методом также хорошо поддаются обработке методом давления.
Литейные алюминиевые сплавы получили весьма широкое применение в различных отраслях промышленности, особенно тех, в которых нужно получать сложные корпусные детали. За счет литья по форме существенно упрощается дальнейшая механическая обработка.
Литейные алюминиевые сплавы
Основные требования, предъявляемые к литейным алюминиевым сплавом – сочетание хороших литейных свойств и оптимальных физико-механических качеств. Данную группу можно разделить на:
- Конструкционные герметичные. Этот тип материала характеризуется высокими литейными качествами, а также удовлетворительной коррозионной стойкостью и механической обрабатываемостью. Как правило, получаемые заготовки и изделия в дальнейшем не подвергаются термической обработке для повышения эксплуатационных качеств. Для изготовления средних и крупных деталей, которые зачастую представлены корпусами, достаточно часто проводится легирование состава.
- Высокопрочные и жаропрочные. Довольно часто подобный состав дополнительно легируется титаном, за счет чего обеспечиваются высокие эксплуатационные качества. Жаропрочность выдерживается в пределах 350 градусов Цельсия. Для упрочнения состава проводится закалка на протяжении достаточно длительного периода. Довольно часто подобный сплав применяется при получении крупногабаритных заготовок самого различного предназначения.
- Коррозионностойкие составы характеризуются тем, что обладают высокой коррозионной стойкостью при эксплуатации в самых различных агрессивных средах. Структура хорошо подается обработке методом резания и сваривания. Однако стоит учитывать относительно невысокие литейные свойства.
Последняя разновидность алюминиевых сплавов достаточно часто применяется при изготовлении деталей, которые будут эксплуатироваться при воздействии морской воды.
Принципы маркировки
Довольно большое количество сложностей возникает с определением марки материала. Маркировка алюминиевых сплавов проводится так, чтобы их можно было просто определить. Как правило, каждому составу присваивается свой номер, который может состоять из цифр и букв.
Среди особенностей маркировки можно отметить нижеприведенные моменты:
- Начинается маркировка с одной или нескольких букв, которые указывают на состав.
- Кроме этого марки имеют цифровой порядковый номер.
- В конце обозначения также может указываться цифра, которая указывает на особенности проведенной термической или иной обработки.
Разберем применяемые правила обозначений на конкретном примере сплава Д17П. Первая буква указывает на то, какой именно состав. В данном случае это дюралюминий. Все дюралюминии имеют определенный химический состав, однако концентрация основных элементов может существенно отличаться. Поэтому число 17 – порядковый номер, указывающий на конкретный материал (то есть с определенными качествами). В конце есть буква, которая применяется для обозначения полунагартованного сплава. Данный метод обработки предусматривает воздействие давления без предварительного нагрева сплава, а значит прочность будет вполовину меньше максимального значения.
В заключение отметим, что каждый состав обладает своими особыми физико-механическими качествами. Данные свойства определяют то, куда именно будет направлен материал для изготовления деталей или дальнейшей обработки. Наиболее важными свойствами принято считать пластичность, теплопроводность, электрическую проводимость и другие. Немаловажным фактором также является то, насколько качественно было проведено изготовление материала. Применение современных технологий позволяет с высокой точностью контролировать концентрацию тех или иных элементов, исключает вероятность появления различных дефектов. В большинстве случаев производство проводится в соответствии с ГОСТ и другими мировыми стандартами.
Применение алюминия
Области применения алюминия
На современном этапе развития дозвуковой и сверхзвуковой авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении.
В авиации США широко применяются сплавы серии 2ххх, Зххх, 5ххх, 6ххх и 7ххх. Серия 2ххх рекомендована для работы при высоких рабочих температурах и с повышенными значениями коэффициента вязкости разрушения. Сплавы серии 7ххх — для работы при более низких температурах значительно нагруженных деталей и для деталей с высокой сопротивляемостью к коррозии под напряжением. Для малонагруженных узлов применяются сплавы серии Зххх, 5ххх и 6xxx. Они же используются в гидро-, масло-и топливных системах.
В России при изготовлении авиационной техники успешно используются упрочняемые термической обработкой высокопрочные алюминиевые сплавы Al-Zn-Mg-Cu и сплавы средней и повышенной прочности Al-Mg-Cu. Они являются конструкционным материалом для обшивки и внутреннего сплавного набора элементов планера самолета (фюзеляж, крыло, киль и др.). Сплав 1420, принадлежащий системе Al-Zn-Mg, используют при конструировании сварного фюзеляжа пассажирского самолета. При изготовлении гидросамолетов предусмотрено применение свариваемых коррозионностойких магнолиевых сплавов (AМг5, АМг6) и сплавов Al-Zn-Mg (1915, В92, 1420).
Рисунок 1 – Гражданский самолет
Бесспорное преимущество имеется у свариваемых алюминиевых сплавов при создании объектов космической техники. Высокие значения удельной прочности, удельной жесткости материала позволили обеспечить изготовление баков, межбаковых и носовых частей ракеты с высокой про-дольной устойчивостью. К достоинствам алюминиевых сплавов (2219 и др.) следует отнести их работоспособность при криогенных температурах в контакте с жидким кислородом, водородом и гелием. У этих сплавов происходит так называемое криогенное упрочнение, т.е. прочность и пластичность параллельно растут с понижением температуры.
Сплав 1460 принадлежит системе Al-Cu-Li и является более перспективным для проектирования и изготовления баковых конструкций применительно к криогенному типу топлива – сжатому кислороду, водороду или природному газу.
Судостроение
Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.
Основное преимущество при внедрении алюминия и его сплавов по сравнению со сталью – снижение массы судов, которая может достигать 50 – 60 %. В результате представляется возможность повысить грузоподъемность судна или улучшить его тактико-технические характеристики (маневренность, скорость и т.д.).
Наиболее широкое применение среди алюминиевых сплавов для изготовления конструкций речного и морского флота находят магналиевые сплавы АМгЗ, АМг5, АМг61, а также сплавы АМц и Д16. Корпус судна повышенной грузоподъемности изготовляют из стали, тогда как надстройки и другое вспомогательное оборудование из алюминиевых сплавов. Имеет место изготовление рыболовецких баркасов из сплава АМг5 (обшивка).
Широкое применение в судостроении США находят свариваемые сплавы серии 5ххх и 6ххх. Там, где необходима высокая прочность (500 МПа), используются полуфабрикаты из сплавов серии 2xxx и 7ххх.
Железнодорожный транспорт
Тяжелые условия эксплуатации подвижного состава железной дороги (длительный срок службы и способность выдерживать ударные нагрузки) выдвигают особые требования к конструкционным материалам.
Рисунок 2 – Товарный поезд
Основные характеристики алюминия и его сплавов, раскрывающие целесообразность применения их в железнодорожном транспорте, высокая удельная прочность, небольшая сила инерции, коррозионная стойкость. Внедрение алюминиевых сплавов при изготовлении сварных емкостей повышает их долговечность при перевозке ряда продуктов химической и нефтехимической промышленности.
Алюминий и его сплавы используются при изготовлении кузова и рамы вагона. Для вагона рекомендованы свариваемые сплавы средней прочности марок АМг3, AMr5, Амг6 и 1915. Перспективными сплавами для рефрижераторных вагонов являются алюминиевые сплавы. В зависимости от продуктов химической промышленности выбирается марка свариваемого материала для котлов цистерны.
В США из свариваемых сплавов серии 6ххх, серии 5ххх и сплава 7005 изготавливают подвижной состав с получением оптимальных прочностных характеристик и высокой коррозионной стойкости сварных элементов.
Автомобильный транспорт
Одним из основных требований к материалам, применяемым в автомобильном транспорте, является малая масса и достаточно высокие показатели прочности. Принимаются во внимание также коррозионная стойкость и хорошая декоративная поверхность материала.
Рисунок 3 – Автомобиль
Высокая удельная прочность алюминиевых сплавов увеличивает грузоподъемность и уменьшает эксплуатационные расходы передвижного транспорта. Высокая коррозионная стойкость материала продляет сроки эксплуатации, расширяет ассортимент перевозимых товаров, включая жидкости и газы с высокой агрессивной концентрацией.
При изготовлении элементов каркаса, обшивки кузова полуприцепа автофургона, рефрижератора, скотовоза и т.п. перспективным материалом являются алюминиевые сплавы АД31, 1915 (прессованные профили) и сплавы АМг2, АМг5 (лист).
Находят применение алюминиевые сплавы АМц, АМгЗ и 1915 при изготовлении отдельных узлов легкового автомобиля (навесные детали, бамперы, радиаторы охлаждения, отопители).
В автомобилестроении США широко используются алюминиевые свариваемые сплавы серии Зххх, 5ххх и 6ххх.
Из прессованных полуфабрикатов сплавов 2014 и 6061 изготовляют балки, рамы тяжелых грузовых автомобилей. Панели и отдельные элементы из сплава 5052 поступают на изготовление кабины. В качестве обшивочного материала кузова грузовика используют лист из сплавов 5052, 6061, 2024, 3003 и 5154. Стойки кузова выполняются из прессованных полуфабрикатов сплавов 6061 и 6063. Магналиевые сплавы серии 5ххх (5052, 5086, 5154 и 5454) являются основным материалом при изготовлении автоцистерн.
Строительство
Перспективность применения алюминиевых сплавов в строительных конструкциях подтверждается технико-экономическими расчетами и многолетней мировой практикой в области сооружения различных строительных объектов.
Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.). В зависимости от назначения строительных алюминиевых конструкций рекомендуются различные марки сплавов: АД1, АМц, АМг2, АД31, 1915 и др.
Рисунок 4 – Здание со светопрозрачными конструкциями из алюминия
Опыт, накопленный в США, подтверждает целесообразность использования алюминиевых сплавов в строительных конструкциях. На них расходуется больше алюминия, чем в любой другой отрасли промышленности. При этом предпочтение отдается внедрению свариваемых сплавов серии Зххх, 5ххх и 6ххх.
Нефтяная и химическая промышленность
Освоение новых месторождений, увеличение глубины скважин выдвигают определенные требования к материалам, применяемым для изготовления деталей и узлов нефте- и газопромыслового оборудования и аппаратуры для переработки продуктов нефти.
Рисунок 5 – Нефтяная вышка
Высокая удельная прочность алюминиевых сплавов позволяет уменьшить массу бурильного оборудования, облегчить их транспортабельность и обеспечить прохождение глубоких скважин.
Коррозионностойкие алюминиевые сплавы дают возможность повысить эксплуатационную надежность бурильных, насосно-компрессорных и нефтегазопроводных труб. Повышенная сопротивляемость коррозионному растрескиванию позволяет применить алюминиевые сплавы при изготовлении емкостей для хранения нефти и ее продуктов.
Основным конструкционным материалом при изготовлении бурильных труб из алюминиевых сплавов является сплав марки Д16.
Высокую стойкость к сырой нефти и некоторым бензинам показали алюминиевые сплавы АМг2, AMr3, АМг5 и АМг6. Из перечисленных магналиевых сплавов наиболее технологичным сплавом для изготовления аппаратов является сплав АМг2, особенно при изготовлении конденсаторов и холодильников на нефтеперегонных заводах.
В США оборудование для нефтяной промышленности изготовляется из алюминиевых сплавов серии Зххх, 5ххх и 6ххх. В конструкции бурового оборудования применяют трубы из сплава 6063. Морские платформы собираются из труб 6061, 6063, а также из высокопрочных сплавов марок 2014 и 7075. Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.
Химической промышленности рекомендованы алюминиевые сплавы АМц, АМг2, АМгЗ, АМг5 для изготовления сосудов, работающих под давлением при температурах от – 196 до +150 °С.
Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.
В США в зависимости от условий эксплуатации аппаратуры химической промышленности применяют сплавы серий 1ххх, Зххх, 5ххх. В отдельных случаях для обеспечения наибольшей прочности применяют термически упрочняемые сплавы 2ххх и 7ххх с пониженной коррозионной стойкостью.
Емкости для хранения химических продуктов выполняют из сплавов высокой коррозионной стойкости – 1100 или 3003; сосуды высокого давления – из сплавов 5052 или 6063; тара, цистерны и другие виды оборудования для хранения уксусной кислоты, высокомолекулярных жирных кислот, спиртов и других продуктов – из сплавов 3003, 6061, 6063, 5052; емкости для озоносодержащих растворов удобрений из сплавов 3004; 5052 и 5454; емкости для хранения растворов нитрата аммония из сплавов 1100, 3003, 3004, 5050, 5454, 6061 и 6062 [3].
Алюминий и ряд сплавов на его основе находят применение в электротехнике, благодаря хорошей электропроводности, коррозионной стойкости, небольшому удельному весу, и, что немаловажно, меньшей стоимостью, по сравнению с медью и ее проводниковыми сплавами.
В зависимости от величины удельного электросопротивления, алюминиевые сплавы подразделяют на проводниковые и сплавы с повышенным электрическим сопротивлением.
Удельная электрическая проводимость электротехнического алюминия марок А7Е и А5Е составляет порядка 60 % от проводимости отожженной меди по международному стандарту. Технический алюминий АД0 и электротехнический А5Е используют для изготовления проводов, кабелей и шин. Применение в электротехнической промышленности получили низколегированные сплавы алюминия системы Al-Mg-Si АД31, АД31Е.
Сплавы алюминия, повышающие его прочность и улучшающие другие свойства, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.
Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава) – сплав алюминия (основа) с медью (Cu: 2,2 – 5,2%), магнием (Mg: 0,2 – 2,7 %) марганцем(Mn: 0,2 – 1 %). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом длZ авиационного и транспортного машиностроения.
Рисунок 6 – Дюралюминий листовой
Силумин – легкие литейные сплавы алюминия (основа) с кремнием (Si: 4 – 13 %), иногда до 23 % и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Из него изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.
Алюминиевые сплавы
Алюминий имеет колоссальное значение в промышленности вследствие повышенной пластичности, высокого уровня тепло- и электропроводности, низкой коррозии, поскольку образующаяся на поверхности пленка Al2O3 выступает защитником от окисления. Из алюминия получается отличный тонкий прокат, фольга, любой формы профиль при помощи прессования и других видов обработки давления. Из него создают разного типа провода, применяемые в электроаппаратуре.
Алюминий, как и железо очень редко применяется в чистом виде. Чтобы придать им заданные полезные качества на производстве добавляют небольшие количества (не больше 1 %) иных элементов, называемых легирующими. Таким образом получают сплавы железа, алюминия и других металлов.
Физические параметры алюминиевых сплавов
Алюминиевые сплавы имеют плотность, которая незначительно отличается от плотности чистого металла (2.7 г/см3). Она колеблется от 2.65 г/см3 для сплава АМг6 до 2.85 г/см3 для сплава В95.
Процедура легирования почти не оказывает влияния на величину модуля упругости и модуля сдвига. К примеру, модуль упругости упрочненного дюралюминия Д16Т почти такой же, как модуль упругости чистого металла А5 (Е=7100 кгс/мм2). Тем не менее, за счет того, что максимум текучести сплавов на несколько единиц превышает максимум текучести чистого алюминия, сплавы алюминия уже можно использовать в качестве конструкционного материала с различным уровнем нагрузок (все зависит от марки сплава и его состояния).
Вследствие низкого показателя плотности удельное значение максимума прочности, максимума текучести и модуля упругости (соответствующие параметры, разделенные на величину плотности) для прочных алюминиевых сплавов можно сравнить с такими же показателями удельных величин для стали и титановых сплавов. Это дает возможность алюминиевым сплавам с высокой прочностью вы ступать конкурентами для стали и титана, однако исключительно до температур не выше 200 С.
Большая часть алюминиевых сплавов отличается худшей электро- и теплопроводностью, коррозионной стойкостью и свариваемостью в сравнении с чистым алюминием.
Известно, что сплавы с более высокой степенью легирования характеризуются существенно меньшей электро- и теплопроводностью. Эти показатели находятся в непосредственной зависимости от состояния сплава.
Самые лучшие коррозионные свойства алюминиевых сплавов наблюдаются у сплавов АМц, АМг, АД31, а худшие – у высоко-прочных сплавов Д16, В95, АК. Помимо этого, коррозионные показатели термоупрочняемых сплавов в значительной степени зависят от режима закалки и старения. К примеру, сплав Д16 чаще всего используется в естественно-состаренном состоянии. Тем не менее, при температуре более 80оС его коррозионные показатели существенно снижаются и для использования в условиях более высоких температур зачастую применяют искусственное старение.
Хорошо поддаются всем видам сварки сплавы АМц и Амг. В процессе сварки нагартованного проката в области сварочного шва осуществляется отжиг, по этой причине прочность шва приравнивается к прочности основного материала в отожженном состоянии.
Виды алюминиевых сплавов
Сегодня очень развито производство алюминиевых сплавов. Существует два типа алюминиевых сплавов:
- деформируемые, из которых создают листы, трубы, профиль, паковки, штамповки
- литейные, из которых осуществляется фасонное литье.
Широкое применение алюминиевых сплавов обусловлено их свойствами. Такие сплавы очень популярны в авиации, автомобилестроении, судостроении и прочих сферах народного хозяйства.
Неупрочняемые сплавы Al – Mn (АМц) и Al – Mg (АМг) являются коррозионностойкими материалами, из которых изготавливают бензобаки, маслобаки, корпуса судов.
Упрочняемые сплавы Al -Mg – Si (АВ, АД31, АД33) применяются для создания лопастей и деталей кабин вертолетов, барабанов колес гидросамолетов.
Сплав алюминия и меди – дюралюминий или дюраль. Сплав с кремнием называют силумином. Сплав с марганцем – АМц имеет повышенную коррозионную стойкость. Такие элементы, как Ni, Ti, Cr, Fe в сплаве способствуют повышению жаропрочности сплавов, затормаживанию процесса диффузии, а присутствие лития и бериллия повышают модуль упругости.
Жаропрочные алюминиевые сплавы системы Al – Cu – Mn (Д20, Д21) и Al – Cu – Mg – Fe – Ni (АК – 4 – 1) используют для создания поршней, головок цилиндров, дисков, лопаток компрессоров и прочих деталей, которым предстоит функционировать при температурах до 300°С. Жаропрочности можно достичь легированием Ni, Fe, Ti, (Д20, Д21, АК – 4 – 1).
Литейные алюминиевые сплавы используют для создания литых заготовок. Это сплавы Al – Si (силумины), Al – Cu (дюрали), Al – Mg (Амг). В числе силуминов стоит отметить сплавы Al – Si (AЛ – 2), Al – Si – Mg (АЛ – 4, АЛ – 9, АЛ – 34), упрочняемые при помощи термообработки. Силумины отлично поддаются литью, а также обработке резанием, свариванием, также их можно анодировать и даже пропитывать лаками.
Высокопрочные и жаропрочные литейные сплавы систем Аl – Cu – Mn (АЛ – 19), Al – Cu – Mn – Ni (АЛ – 33), Al – Si – Cu – Mg (АЛ – 3, АЛ – 5). Прошедшие процесс легирования хромом, никелем, хлором или цинком выдерживают температуру до 300°С. Из них создают поршни, головки блока, цилиндров.
Спеченный алюминиевый порошок (САП) получают методом прессования (700 МПа) при температуре от 500 до 600°С алюминиевой пудры. САП отличается повышенной прочностью и уровнем жаропрочности до 500°С.
Марки алюминиевых сплавов
Определенные характеристики алюминиевых сплавов соответствуют конкретным маркам этих сплавов. Признанные международные и национальные нормативы (раньше были немецкие DIN, а сегодня европейские EN, американские ASTM и международные ISO) также как и российские ГОСТы рассматривают по отдельности чистый алюминий и его сплавы. Чистый алюминий согласно этим документам делят на марки (grades), а не на сплавы (alloys).
Все марки алюминия делят на:
- алюминий высокой чистоты (99,95 %)
- технический алюминий, имеющий около 1 % примесей или добавок.
Стандарт EN 573-3 определяет разные по чистоте версии алюминия, к примеру, «алюминий EN AW 1050A», и алюминиевые сплавы, к примеру, «сплав EN AW 6060». В тоже время, достаточно часто алюминий называют сплавом, к примеру, «алюминиевый сплав 1050А».
В российских стандартах, к примеру, в документе ГОСТ 4784-97 «Алюминий и сплавы алюминиевые деформируемые» и иных документах по алюминию и алюминиевым сплавам, вместо термина «обозначения» используется близкие термин «марка», только в английском эквиваленте «grade». По существующим стандартам нужно использовать фразы типа «алюминий марки АД0» и «алюминиевый сплав марки АД31».
Однако зачастую термин «марка» используют лишь для алюминия, а алюминиевые сплавы называют просто «алюминиевыми сплавами» без всяких марок, к примеру, «алюминиевый сплав АД31».
Иногда люди путают термин «марка» с термином «маркировка». ГОСТ 2.314-68 определяет термин маркировка, как совокупность знаков, характеризующих продукт, к примеру, обозначение, шифр, номер партии (серии), дата изготовления, товарный знак фирмы. При этом марка – это монтажные или транспортные обозначения. Следовательно, обозначение или марка сплава – это всего лишь небольшая часть маркировки, но не сама маркировка.
Марку алюминия или сплава наносят на один из торцов слитка, чушки. При помощи несмываемой краски наносят цветные полосы, которые являются маркировкой. К примеру, согласно ГОСТ 11069-2001 алюминий марки А995 промаркирован четырьмя зелеными вертикальными полосами.
Согласно документу ГОСТ 11069-2001 марки алюминия обозначаются цифрам после запятой в процентном содержании алюминия: А999, А995, А99, А85, А8, А7, А6, А5 и А0. При этом самый чистый алюминий — А999, в нем содержится 99,999 % алюминия. Он используется для лабораторных опытов. В промышленной отрасли используют алюминий высокой чистоты – от 99,95 до 99,995 % и технической чистоты – от 99,0 до 99,85 %.