Содержание

Классификация стали по содержанию углерода

Химический состав и классификация сталей по назначению

Сталь является металлом, широко используемым в машиностроении, самолетостроении, строительстве и других отраслях производства. Популярность материала обусловлена сочетанием его отличных технологических и физико-механических свойств. К сталям относят железоуглеродистые соединения, химический состав которых предполагает содержание углерода в количестве менее 2,14%, а помимо этого компонента присутствуют вредные и полезные примеси.

Сочетание характерной циклической прочности в статическом состоянии и жесткости достигается путем изменения содержания углерода и легирующих компонентов. Различные качества стали получаются в результате применения в производстве определенных химических и термических технологий.

Классификация углеродистых сталей

Углеродистые сплавы подразделяют по следующим характеристикам:

  • количеству содержащегося углерода;
  • назначению;
  • структуре в состоянии равновесия;
  • степени раскисления.

В зависимости от количества углерода материал делят на категории:

  • высокоуглеродистые — больше 0,7%;
  • среднеуглеродистые — 0,3−0,7%;
  • низкоуглеродистые — до 0,3%.

В результате полученного качества стальные сплавы делят на:

  • высококачественные;
  • обыкновенные;
  • качественные.

Из металла в жидком состоянии удаляют кислород для уменьшения хрупкости при горячем формировании, этот процесс называется раскислением. По характеру отвердевания и степени раскисления материал классифицируется как кипящий, полуспокойный и спокойный.

В зависимости от полученной структуры в равновесном состоянии материал делят на:

  • эвтектоидные, характеризующиеся структурой из перлита;
  • доэвтектоидные, содержащие перлит и феррит;
  • заэвтектоидные — со вторичным цементитом и перлитом.

По назначению использования металл подразделяется на группы:

  • конструкционные (улучшаемые, высокопрочные, цементируемые, рессорно-пружинные), применяемые в строительстве, приборостроении, машиностроении и самолетостроении;
  • инструментальные для штампов горячей (200˚С) и холодной прессовки, измерительного и режущего инструмента).

Конструкционные металлы

Обыкновенные по качеству стали выпускаются в виде балок, прутков, листового материала, швеллеров, труб, уголка и другого проката и делятся на категории А, В, Б. В наименовании присутствуют буквы Ст и цифра, обозначающая номер марки, с увеличением значения числа увеличивается показатель содержания углерода. Для материалов категорий В и Б, но не А, перед Ст ставится искомая буква для указания принадлежности.

Группа раскисления обозначается СП, ПС, КП — спокойные, полуспокойные и кипящие, соответственно. Категория, А используется для производства деталей, получаемых холодной обработкой, Категория Б применяется для элементов, изготавливаемых сваркой, ковкой, по методу термической обработки. Стали В по стоимости дороже предыдущих категорий, используются для производства ответственных конструкций и сварочных элементов.

Из всех трех категорий обыкновенных углеродистых сталей делают металлические конструкции и детали в приборостроении и машиностроении со слабой нагрузкой, в тех случаях, когда работоспособность обусловлена требуемой жесткостью. Металлы в виде арматуры вкладывают в железобетонные конструкции. Из категорий В и Б делают сварные фермы, рамы и металлические узлы, которые затем укрываются цементным раствором.

Среднеуглеродистые группы с большим запасом прочности используют для рельсов, колес железнодорожных вагонов, шкивов, валов и шестеренок механических приспособлений и машин. Некоторые материалы этой группы разрешаются к термической обработке.

Качественные стали углеродистой группы применяют в слабонагруженных деталях, они маркируются цифрами от 05 до 85, обозначающими процентную концентрацию углерода. К углеродистым материалам относятся стали с увеличенным содержанием марганца, которые отличаются повышенной прокаливаемостью. За счет изменения количества углерода, марганца и выбора соответствующего способа термической обработки получают различные технологические и механические качества.

Низкоуглеродистые сплавы отличаются хорошей пластичностью при холодной обработке, но имеют небольшой запас прочности. Их выпускают в виде листов, материал мягкий, легко штампуется, тянется, сюда относят жесть и металл для эмалированных предметов быта. При цементировании сталей в производстве увеличивается показатель поверхностной прочности, что дает возможность изготавливать малонагруженные колеса зубчатой передачи, кулачки и др.

Среднеуглеродистые металлы и аналогичные составы с увеличенным процентом марганца отличаются средними показателями прочности, но пластичность и вязкости при этом снижается. По условиям работы запчастей определяется метод усиления сталей в виде нормализации, низкоотпускной и ТВЧ закалки и др. Из них делают высокопрочную проволоку, рессоры, пружины и повышенными требованиями к износостойкости.

Автоматные виды

Эти материалы маркируются литерой, А и цифрами, указывающими на концентрацию углерода в сотых процента. Легирование свинцом добавляет букву С после А. Введение селена, марганца, теллура позволяет сократить применение режущего инструмента при обработке. На степень обрабатываемости также влияет добавка фосфора, серы и кальция, последний вводится в виде силикальцита в жидкий сплав.

Содержание фосфора и серы снижает показатели качества, сера снижает антикоррозионные свойства, сульфидов ведут к нарушению однородности металла. Их этого класса сталей делают детали сложной формы и поверхности, крепежные элементы, рассчитанные на небольшую нагрузку.

Легированные типы

К ним относят металлы с содержанием легирующих добавок в количестве до 2,5%. Буквенные обозначения марки включают литеры, указывающие на определенные примеси, а цифра после них говорит о процентном содержании элемента. Если его содержание менее 1,5%, то в обозначении добавка не ставится.

Содержание углерода в этой группе сталей нормируется количеством 0,1−0,3%, к основным свойствам после термической, химической обработки и низкого отпуска после закалки относят:

  • высокую твердость материала на поверхности;
  • уменьшенную прочность средних слоев и повышенную вязкость.

Стали используют для производства деталей машин и приборов, предназначенных для работы с ударными и переменными нагрузками в условиях повышенной изнашиваемости.

Цементируемые материалы

Для повышения показателей твердости, выносливости при контакте, износостойкости, прокаливаемости используют хром, магний, никель, последний элемент повышает вязкость и снижает предел хладноломкости. Цементируемые составы делят на две группы:

  • средней прочности с порогом текучести меньше 700 МПа;
  • повышенной прочности с аналогичным показателем в пределах 700−1100 МПа.

По содержанию добавок различают виды:

  • хромистые составы и хромованадиевые, цементируемые на глубину менее 1,5 мм;
  • хромомарганцевые составы включают титана 0,06%, марганца и хрома по 1%, имеют особенность внутренне окисляться при газовой цементации, что ведет к уменьшению прочностных характеристик;
  • хромоникельмолибденовые сплавы являются представителями мартенситного класса и отличаются уменьшенным короблением, что обусловлено воздушной закалкой, легированием редкоземельными металлами, повышающими прокаливаемость, статическую прочность и сопротивление ударам.

Пружинно-рессорные сплавы

Детали работают в условиях упругой деформации и подергаются циклическим нагрузкам, поэтому от сталей требуются высокие показатели текучести, пластичности и сопротивления излому. В состав входят:

  • марганец — менее 1,2%;
  • кремний — менее 2,7%;
  • ванадий — до 0,26%;
  • хром — до 1,25%;
  • никель — менее 1,75%;
  • вольфрам — менее 1,2%.

В процессе обработки уменьшаются размеры зерен, увеличивается сопротивление металла. Для транспортного производства особо ценными являются кремнистые сплавы, если технология не позволяет им в производстве обезуглероживаться, то выносливость материала остается на уровне заданных параметров. Введение ванадия, хрома, ванадия, никеля помогает затормозить излишний рост зерен при нагревании и повысить прокаливаемость. Из высокоуглеродистых холоднотянутых проволок, аустенитных нержавеек и высокохромистых мартенситных сталей, также делают пружины и другие упругие элементы.

Инструментальные стали

Для обеспечения надежной работы инструментов сталь должна обладать специальными свойствами, которые проявляются у каждой группы материалов по-разному в зависимости от производства и технологии введения добавок.

Шарикоподшипниковые формы

Сплавы при производстве очищаются от неметаллических примесей, использование технологии вакуумно-дугового или электрошокового переплава уменьшает пористость металла. При производстве подшипников и их узлов применяют хромистые шарикоподшипниковые стали с добавками хрома. Дополнительное легирование осуществляется марганцем и кремнием с целью увеличить показатель прокаливаемости. Чтобы детали можно было изготавливать методом холодной штамповки и резать применяется отжиг металла на твердость.

Закалка деталей (роликов, шарикоподшипников и колец) проводится в масляной ванне при температуре 850−870˚С, их охлаждают с целью обеспечения стабильности до 25˚С перед отпуском. Так как подшипниковые и подобные элементы при эксплуатации испытывают сильные динамические нагрузки, то их делают из металлов с дальнейшей термической обработкой и цементацией.

Износостойкие виды

Сопротивление износу повышается с увеличением показателя поверхностной твердости материала. Для долговременной эксплуатации важны такие качества сплава:

  • сопротивление разрушению при абразивном трении;
  • долговременная эксплуатация в условиях высокого давления и ударных нагрузок.

Износостойкие металлы применяют при изготовлении гусеничных траков, дробильных плит камнедробильного оборудования, раздавливающих щек. Работа в таких условиях эффективна благодаря свойству сталей набирать прочность и твердость в условиях пластической холодной деформации, достигающей 70%. Добавки фосфора больше 0,027% приводят к увеличению хладноломкости сырья.

Литая сталь имеет структуру аустенита, у которого на границах зерен выделяется излишний марганца карбид, ведущий к уменьшению прочности и вязкости. Чтобы получить аустенитную однофазную структуру заготовки закаливают в водной среде при температуре около 1100˚С.

Сопротивляющиеся коррозии

Эти материалы используют для изготовления элементов приборов, работающих в условиях электрохимической коррозии, их называют нержавеющими. Стойкость к коррозии развивается после введения добавок, ведущих к образованию поверхностных пленок с хорошей адгезией к металлу. Эти слои уменьшают непосредственное взаимодействие сталей с внешними раздражающими факторами и повышают потенциал в электрохимической среде.

Читать еще:  Искусственное старение металла своими руками

Нержавеющие металлы делят на хромоникелевые и хромистые. Хромистые составы используют для пластичных деталей, которые изготавливают штамповкой и методом сварки. Этот вид подразделяют на ферритные, мартенситно-ферритные и мартенситные сплавы. Для повышения сопротивления ударам их закаливают в масле при температуре около 1000˚С в условиях высокого отпуска с показателями температуры в пределах 600−800˚С.

Жаропрочные сплавы

Применяют для изготовления элементов, работающих при температуре выше 500˚С, составы низколегированные, содержащие до 0,25% С и других легирующих добавок: хрома, вольфрама, никеля. Закалка и нормализация осуществляется в масле при температуре около 890−1050˚С. Из перлитных сталей делают детали, подвергающиеся в работе режиму ползучести при малых нагрузках, например, паронагревательные трубы, арматура котлов с паром, крепежные детали.

Углеродистая сталь — классификация, маркировка и применение

Сталь – это сплав, состоящий из двух обязательных компонентов, – железа и углерода. Дополнительные элементы – кремний менее 1%, марганец менее 1%, сера – менее 0,05%, фосфор менее 0,06%. Содержание углерода не более 2,14%. Сплавы с процентным соотношением C, превышающим 2,14%, относятся к чугунам. По химическому составу марки стали разделяют на углеродистые и легированные, которые содержат дополнительные добавки, придающие материалу желаемые характеристики. Углеродистые стальные сплавы классифицируют по степени раскисления, содержанию углерода, качеству.

Классификация углеродистых сталей по степени раскисления

Такие сплавы обладают наиболее однородной структурой. Для раскисления используют алюминий, ферросилиций и ферромарганец, которые практически полностью удаляют находящие в расплаве газы. Сочетание практически полного отсутствия газов с мелкозернистой структурой, обусловленной наличием остаточного алюминия, обеспечивает хорошее качество металла. Эти марки подходят для изготовления деталей, изделий и конструкций ответственного назначения. Основной недостаток – высокая стоимость.

Это наиболее дешевая и наименее качественная группа. Из-за использования минимального количества добавок для раскисления в материале присутствуют растворенные газы, которые являются причиной неоднородности структуры, химического состава, а следовательно механических свойств. Такие металлы обладают плохой свариваемостью, поскольку из-за присутствия газов высока вероятность образования трещин на швах.

Полуспокойные

Группа занимает промежуточное положение по стоимости и характеристикам. В отливке образуется гораздо меньше газовых пузырьков, по сравнению с кипящими сталями. При прокатке внутренние дефекты в основной массе устраняются. Такие материалы часто применяются в качестве конструкционных сплавов.

Виды нелегированных углеродистых сталей по содержанию углерода

Низкоуглеродистые с содержанием C не более 0,25%

Большая часть этой продукции выпускается в виде холоднокатаных или отожженных листов и полос. Свойства, а следовательно области ее применения, зависят от процентного соотношения компонентов:

  • До 0,1% C, Mn менее 0,4%. Высокая способность к горячей деформации и холодному волочению. Материалы востребованы при производстве проволоки, очень тонкого листа, используемого при изготовлении тары, а также для изготовления корпусов автомобилей.
  • C 0,1-0,25%. Способность к деформированию ниже, чем у вышеописанной группы, но твердость и прочность выше. Часто эти марки востребованы для производства деталей с цементуемым поверхностным слоем. Процесс цементации позволяет получить износостойкий поверхностный слой в сочетании с вязкой сердцевиной. Это актуально для валов и шестерен.
  • C на уровне 0,25%, Mn и Al – до 1,5%. Обладают высокой вязкостью. В металлы, предназначенные для штамповки, ковки, производства бесшовного трубного проката и листа для котлов, алюминий не добавляют.
  • C на уровне 0,15%, Mn – до 1,2%, Pb до 0,3% или без него, минимальное количество Si. Эту группу применяют в массовом производстве на автоматических линиях деталей, не предназначенных для восприятия серьезных механических и температурных нагрузок. Для изделий с высокими требованиями по пластичности, вязкости, коррозионной стойкости сплавы не применяются.

Среднеуглеродистые с C0,2-0,6%

Содержание марганца обычно находится в пределах 0,6-1,65%. Применяются при производстве продукции, запланированной для эксплуатации при высоких нагрузках. Обычно их производят спокойными. Упрочняются нагартовкой или термообработкой. Все стали этой группы могут подвергаться ковке. Данная металлопродукция широко применяется в машиностроении. Марки с высоким содержанием углерода (0,4-0,6%) востребованы при производстве железнодорожных рельсов, колес и осей вагонов.

Высокоуглеродистые – 0,6-2,0%

Повышение количества углерода до 1% приводит к росту прочности и твердости при постепенном снижении предела текучести и пластичности. При росте процентного соотношения C выше 1% начинается формирование грубой сетки из вторичного мартенсита, приводящей к понижению прочности материала. Поэтому стали с содержанием C более 1,3% практически не изготавливают.

Высокоуглеродистые марки имеют высокую себестоимость изготовления, обладают низкой пластичностью, плохо свариваются. Область применения этой группы достаточно ограничена – производство режущего инструмента, в том числе предназначенного для землеройной и сельскохозяйственной техники, изготовление высокопрочной проволоки.

Классификация конструкционных углеродистых сталей по качеству, их маркировка и применение

Конструкционные стали обыкновенного качества

Их производят в соответствии с ГОСТом 380-2005, в продажу поставляют в виде листового, сортового и фасонного проката. ГОСТ подразумевает выпуск следующих марок:

  • Ст0;
  • Ст1пс, Ст1сп, Ст1кп;
  • Ст2пс, Ст2сп, Ст2кп;
  • Ст3пс, Ст3сп, Ст3кп, Ст3Гсп, Ст3Гпс;
  • Ст4пс, Ст4сп, Ст4кп;
  • Ст5пс, Ст5сп, Ст5Гпс;
  • Ст6пс, Ст6сп.

Буквенно-цифровая маркировка этой группы сплавов:

  • Ст – сталь;
  • цифры 0-6 обозначают номер марки;
  • наличие в обозначении буквы «Г» указывает на присутствие марганца в количестве 0,8% и более;
  • последние две буквы характеризуют степень раскисления, сп – спокойная, пс – полуспокойная, кп – кипящая.

Сталь качественная конструкционная

Изготавливается в соответствии с ГОСТом 1050-2-13 следующих марок – 05, 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 58, 60, а также марки 55ПП, 60ПП, 60ПП «селект» – пониженной прокаливаемости. В маркировке таких сплавов указывают степени раскисления, если они относятся к кипящим или полуспокойным, например 10 кп или 10 пс. Индекс сп в обозначении качественных конструкционных марок не указывается.

Классификация углеродистых сталей: марки, маркировка, свойства, применение

Разобраться в таком вопросе, как классификация углеродистых сталей, очень важно, так как это позволяет получить полное представление о характеристиках той или иной разновидности этого популярного материала. Маркировка таких сталей, как и любых других, не менее важна, и специалист должен уметь разбираться в ней, чтобы правильно выбрать сплав в соответствии с его свойствами и химическим составом.

Из углеродистых сталей выпускается огромный ассортимент металлопроката

Отличительные характеристики и основные категории

К углеродистым сталям, основу которых составляют железо и углерод, относят сплавы, содержащие минимум дополнительных примесей. Количественное содержание углерода является основанием для следующей классификации сталей:

  • низкоуглеродистые (содержание углерода в пределах 0,2%);
  • среднеуглеродистые (0,2–0,6%);
  • высокоуглеродистые (до 2%).

Нормы содержания химических элементов в углеродистой стали

К наиболее значимым достоинствам углеродистых сталей различных марок можно отнести:

  • высокую пластичность;
  • хорошую обрабатываемость (вне зависимости от температуры нагрева металла);
  • отличную свариваемость;
  • сохранение высокой прочности даже при значительном нагреве (до 400°);
  • хорошую переносимость динамических нагрузок.

Есть у углеродистых сталей и недостатки, среди которых стоит выделить:

  • снижение пластичности сплава при увеличении в его составе содержания углерода;
  • ухудшение режущей способности и снижение твердости при нагреве до температур, превышающих 200°;
  • высокую склонность к образованию и развитию коррозионных процессов, что налагает дополнительные требования к изделиям из такой стали, на которые должно быть нанесено защитное покрытие;
  • слабые электротехнические характеристики;
  • склонность к тепловому расширению.

Отдельного внимания заслуживает классификация углеродистых сплавов по структуре. Основное влияние на превращения в них оказывает количественное содержание углерода. Так, стали, относящиеся к категории доэвтектоидных, имеют структуру, основу которой составляют зерна феррита и перлита. Содержание углерода в таких сплавах не превышает 0,8%. С увеличением количества углерода уменьшается количество феррита, а объем перлита, соответственно, увеличивается. Стали, в составе которых содержится 0,8% углерода, по данной классификации относят к эвтектоидным, основу их структуры преимущественно составляет перлит. При дальнейшем увеличении количества углерода начинает формироваться вторичный цементит. Стали с такой структурой относятся к заэвтектоидной группе.

Микроструктура сталей формируется в процессе кристаллизации и зависит от содержания в сплаве углерода

Увеличение в составе стали количества углерода до 1% приводит к тому, что такие свойства металла, как прочность и твердость, значительно улучшаются, а предел текучести и пластичность, напротив, ухудшаются. Если количество углерода в стали будет превышать 1%, это может привести к тому, что в ее структуре будет формироваться грубая сетка из вторичного мартенсита, что самым негативным образом сказывается на прочности материала. Именно поэтому в сталях, относящихся к категории высокоуглеродистых, количество углерода, как правило, не превышает 1,3%.

На свойства углеродистых сталей серьезное влияние оказывают и примеси, содержащиеся в их составе. Элементами, которые положительно воздействуют на характеристики сплава (улучшают раскисление металла), являются кремний и марганец, а фосфор и сера – это примеси, ухудшающие его свойства. Фосфор при повышенном содержании в составе углеродистой стали приводит к тому, что изделия из нее покрываются трещинами и даже ломаются при воздействии низких температур. Такое явление носит название хладноломкости. Что характерно, стали с повышенным содержанием фосфора, если они находятся в нагретом состоянии, хорошо поддаются сварке и обработке при помощи ковки, штамповки и др.

Содержание химических элементов в углеродистой стали различных марок

В изделиях из тех углеродистых сталей, в составе которых в значительном количестве содержится сера, может возникать такое явление, как красноломкость. Суть этого феномена заключается в том, что металл при воздействии высокой температуры начинает плохо поддаваться обработке. Структура углеродистых сталей, в составе которых содержится значительное количество серы, представляет собой зерна с легкоплавкими образованиями на границах. Такие образования при повышении температуры начинают плавиться, что приводит к нарушению связи между зернами и, как следствие, к образованию многочисленных трещин в структуре металла. Между тем параметры сернистых углеродистых сплавов можно улучшить, если выполнить их микролегирование при помощи циркония, титана и бора.

Читать еще:  Свидетельство накс об аттестации технологии сварки

Технологии производства

На сегодняшний день в металлургической промышленности используются три основных технологии производства углеродистой стали. Их основные отличия состоят в типе используемого оборудования. Это:

  • плавильные печи конвертерного типа;
  • мартеновские установки;
  • плавильные печи, работающие на электричестве.

В конвертерных установках расплавке подвергаются все составляющие стального сплава: чугун и стальной лом. Кроме того, расплавленный металл в таких печах дополнительно обрабатывается при помощи технического кислорода. В тех случаях, когда примеси, присутствующие в расплавленном металле, необходимо перевести в шлак, в него добавляют обожженную известь.

Печь для конвертерной выплавки стали

Процесс получения углеродистой стали по данной технологии сопровождается активным окислением металла и его угаром, величина которого может доходить до 9% от общего объема сплава. К недостатку данного технологического процесса следует отнести и то, что он проходит с образованием значительного количества пыли, а это вызывает необходимость использования специальных пылеочистительных установок. Применение таких дополнительных устройств сказывается на себестоимости получаемой продукции. Однако все недостатки, которыми характеризуется этот технологический процесс, в полной мере компенсируются его высокой производительностью.

Выплавка в мартеновской печи – еще одна популярная технология, которую применяют для получения углеродистых сталей различных марок. В ту часть мартеновской печи, которая называется плавильной камерой, загружается все необходимое сырье (стальной лом, чугун и др.), которое подвергается нагреванию до температуры плавления. В камере происходят сложные физико-химические взаимодействия, в которых принимают участие расплавленные металл, шлак и газовая среда. В результате получается сплав с требуемыми характеристиками, который в жидком состоянии выводится через специальное отверстие в задней стенке печи.

Цех мартеновских печей

Сталь, получаемая при выплавке в электрических печах, за счет использования принципиально другого источника нагревания не подвергается воздействию окислительной среды, что позволяет сделать ее более чистой. В различных марках углеродистой стали, полученной при выплавке в электрических печах, присутствует меньшее количество водорода. Этот элемент является основной причиной появления в структуре сплавов флокенов, значительно ухудшающих их характеристики.

Каким бы способом ни выплавлялся углеродистый сплав и к какой бы категории в классификации он ни относился, основным сырьем для его производства являются чугун и металлический лом.

Способы улучшения прочностных характеристик

Если свойства марок легированных сталей улучшают посредством ввода в их состав специальных добавок, то решение такой задачи по отношению к углеродистым сплавам осуществляется за счет выполнения термообработки. Одним из передовых методов последней является поверхностная плазменная закалка. В результате использования этой технологии в поверхностном слое металла формируется структура, состоящая из мартенсита, твердость которого составляет 9,5 ГПа (на некоторых участках она доходит до 11,5 ГПа).

Само оборудование для плазменной закалки малогабаритно, мобильно и просто в эксплуатации

Поверхностная плазменная закалка также приводит к тому, что в структуре металла формируется метастабильный остаточный аустенит, количество которого возрастает, если в составе стали увеличивается процентное содержание углерода. Данное структурное образование, которое может преобразоваться в мартенсит при выполнении обкатки изделия из углеродистой стали, значительно улучшает такую характеристику металла, как износостойкость.

Одним из эффективных способов, позволяющих значительно улучшить характеристики углеродистой стали, является химико-термическая обработка. Суть данной технологии заключается в том, что стальной сплав, нагретый до определенной температуры, подвергают химическому воздействию, что и позволяет значительно улучшить его характеристики. После такой обработки, которой могут быть подвергнуты углеродистые стали различных марок, повышаются твердость и износостойкость металла, а также улучшается его коррозионная устойчивость по отношению к влажным и кислым средам.

Обработка деталей химико-термическим способом в вакуумной печи значительно увеличивает поверхностную прочность

Другие параметры классификации

Еще одним параметром, по которому классифицируют углеродистые сплавы, является степень их очищения от вредных примесей. Лучшими механическими характеристиками (но и более высокой стоимостью) отличаются стали, в составе которых присутствует минимальное количество серы и фосфора. Данный параметр стал основанием для классификации углеродистых сталей, в соответствии с которой выделяют сплавы:

  • обыкновенного качества (В);
  • качественные (Б);
  • повышенного качества (А).

Общие принципы классификации сталей

Стали первой категории (их химический состав не уточняется производителем) выбирают, основываясь только на их механических характеристиках. Такие стали отличаются минимальной стоимостью. Их не подвергают ни термообработке, ни обработке давлением. Для качественных сталей производитель оговаривает химический состав, а для сплавов повышенного качества – и механические свойства. Что важно, изделия из сплавов первых двух категорий (Б и В) можно подвергать термообработке и горячей пластической деформации.

Существует классификация углеродистых сплавов и по их основному назначению. Так, различают конструкционные стали, из которых производят детали различного назначения, и инструментальные, используемые в полном соответствии с их названием – для изготовления различного инструмента. Инструментальные сплавы, если сравнивать их с конструкционными, отличаются повышенной твердостью и прочностью.

Содержание основных элементов в инструментальных сталях

В маркировке углеродистой стали можно встретить обозначения «сп», «пс» и «кп», которые указывают на степень ее раскисления. Это еще один параметр классификации таких сплавов.
Буквами «сп» в маркировке обозначаются спокойные сплавы, в составе которых может содержаться до 0,12% кремния. Они характеризуются хорошей ударной вязкостью даже при низких температурах и отличаются высокой однородностью структуры и химического состава. Есть у таких углеродистых сталей и минусы, наиболее значимые из которых заключаются в том, что поверхность изделий из них менее качественная, чем у кипящих сталей, а после выполнения сварочных работ характеристики деталей из них значительно ухудшаются.

Полуспокойные сплавы (обозначаются буквами «пс» в маркировке), в которых кремний может содержаться в пределах 0,07–0,12%, характеризуются равномерным распределением примесей в своем составе. Этим обеспечивается постоянство характеристик изделий из них.

Характеристики распространенных полуспокойных сталей

В кипящих углеродистых сталях, содержащих не более 0,07% кремния, процесс раскисления полностью не завершен, что становится причиной неоднородности их структуры. Между тем их выделяет ряд достоинств, к наиболее значимым из которых следует отнести:

  • невысокую стоимость, что объясняется незначительным содержанием специальных добавок;
  • высокую пластичность;
  • хорошую свариваемость и обрабатываемость при помощи методов пластической деформации.

Как маркируются углеродистые стальные сплавы

Разобраться в принципах маркировки углеродистой стали так же несложно, как и в основаниях ее классификации: они мало чем отличаются от правил обозначения стальных сплавов других категорий. Для того чтобы расшифровать такую маркировку, не нужно даже заглядывать в специальные таблицы.

Примеры расшифровки маркировки

Буква «У», стоящая в самом начале обозначения марки сплава, указывает на то, что он относится к категории инструментальных. О том, в какую качественную группу входит углеродистая сталь, говорят буквы «А», «Б» и «В», проставляемые в самом конце маркировки. Количество углерода, содержащееся в сплаве, проставляется в самом начале его маркировки. При этом для сталей, обладающих повышенным качеством (группа «А»), количество данного элемента будет указано в сотых долях процента, а для сплавов групп «Б» и «В» – в десятых.

В маркировке отдельных углеродистых сталей можно встретить букву «Г», стоящую после цифр, указывающих на количественное содержание углерода. Такая буква свидетельствует о том, что в металле содержится повышенное количество такого элемента, как марганец. На то, какой степени раскисления соответствует углеродистая сталь, указывают обозначения «сп», «пс» и «кп».

Углеродистые сплавы благодаря своим характеристикам и невысокой стоимости активно используются для производства элементов строительных конструкций, деталей машин, инструментов и металлических изделий различного назначения.

Классификация сталей

Данная статья новичку покажется очень сложной. Здесь будет использовано много не понятных терминов, но без этого невозможно раскрыть всю суть о классификации сталей. Ваша задача – прочесть и понять в общих чертах как делятся стали, какие они бывают и для чего они применяются.

Классификация сталей

Классифицируются стали по следующим пунктам:

  • химическому составу;
  • структурному составу;
  • качеству;
  • степени раскисления;
  • назначению.

Химический состав

По химическому составу стали делятся на:

Углеродистые делятся на:

  • низкоуглеродистые – содержат до 0,25% С;
  • среднеуглеродистые – содержат от 0,25 до 0,6% С;
  • высокоуглеродистые – содержат от 0,6 до 0,2% С.

Легированные делятся на:

  • низколегированные – содержанию легирующих элементов до 0,25%;
  • среднелегированные – содержанию легирующих элементов 0,25 – 10,0%;
  • высоколегированны – содержанию легирующих элементов более 10,0%.

По структуре в отожженном состоянии стали делятся на следующие классы:

  • доэвтектоидный;
  • заэвтектоидный;
  • ледебуритный (карбидный);
  • ферритный;
  • аустенитный.

Структурный состав

По структуре после нормализации стали делятся на следующие классы:

Классификация по качеству

По качеству стали классифицируются:

  • обыкновенного качества;
  • качественные;
  • высококачественные;
  • особокачественные.

Стали обыкновенного качества массово применяются в разных отраслях по причине их дешевизны. Не обладает особыми свойствами. Содержат углерод до 0,6%.

Качественные стали бывают углеродистые и легированные. Применяются для изготовления ответственных деталей и узлов. Имеют высокую стоимость.

Высококачественные стали применяется в особо ответственных узлах. Имеют низкого содержания вредных примесей (серы и фосфора).

Особокачественные стали имеют очень низкое содержание серы и фосфора. Применяются в ответственных узлах, которые испытывают высокие динамические нагрузки.

Читать еще:  Влияние легирующих элементов на свариваемость стали

Классификация по степени раскисления

По степени раскисления стали делятся:

Спокойные стали содержат малое количество кислорода. Затвердевание происходит спокойно без газовыделения. Спокойные стали массово применяют в сварочном производстве.

Полуспокойные стали затвердевают без кипения, но выделяют большое количество газов. По качеству очень приближены к спокойным сталям и могут их заменить.

Кипящие стали содержат в своём составе большое количество вредных примесей. Они очень хрупкие и плохо свариваются.

Классификация стали по назначению

Конструкционные стали делятся на:

  • строительные;
  • стали для холодной штамповки;
  • цементируемые;
  • улучшаемые;
  • высокопрочные;
  • пружинно-рессорные;
  • подшипниковые;
  • автоматные;
  • коррозионностойкие;
  • износостойкие;
  • жаропрочные и жаростойкие.

Строительные

Применяются для изготовления конструкций любой сложности, имеют хорошую свариваемость.

Стали для холодной штамповки

К таким сталям относятся низкоуглеродистые стали обладающие высокой пластичностью.

Цементируемые стали

Это стали с содержанием углерода в пределах 0,1-0,3% и работающие при повышенных динамических нагрузках.

Улучшаемые

К улучшаемым относятся среднеуглеродистые и хромистые стали которые подвергаются термообработке (закалке и высоком отпуску).

Высокопрочные стали

К ним относятся стали имеющие специальный химический состав, который при термообработке увеличивают прочностные свойства в разы.

Пружинно-рессорные стали

Применяются в машиностроении для изготовления амортизаторов и рессор высоконагруженных машин.

Подшипниковые стали (шарикоподшипниковые)

К данным сталям предъявляют повышенные требования по прочности, износоустойчивости и выносливости. Данные свойства достигаются за счёт содержания хрома в пределах 1,5%. Ярким примером такой шарикоподшипниковой стали является сталь ШХ15.

Автоматная сталь

Данная сталь используется для изготовления крепёжных деталей на металлообрабатывающих станках. В связи с этим данная сталь должна хорошо обрабатываться на станке путём резания, образовывая легко обламывающуюся стружку. Минусом автоматные стали является низкая пластичность.

Износостойкая сталь

Основное применение – траки гусеничных машин, ковши экскаваторов и землеройных машин. Износостойкость достигается, за счёт введение в сталь марганца.

Коррозионностойкие (нержавеющие) стали

Эти стали содержат хром в пределах от 14%. За счёт хрома происходит образование на поверхности стали оксидной плёнки, что защищает сталь от разрушения в агрессивной среде.

Коррозионностойкие стали делятся:

  • Коррозионностойкие. Из них изготавливают различные узлы, которые эксплуатируются при температуре до 600°С.
  • Жаропрочные. Из них изготавливают клапаны, роторы, лопатки турбин, работающие при высоких температурах (80% от температуры плавления) в течение длительного времени.
  • Жаростойкие. Изготавливают ответственные узлы, работающие при высоких температурах (1200°С).
  • Криогенные. Применяется для изготовления деталей холодильных установок, работающих при температуре до -200°С.

Инструментальная сталь по назначению делится:

  • для режущего инструмента;
  • для измерительного инструмента;
  • сталь для штампов.

Сталь для режущего инструмента

Имеет высокую твердость и термостойкость, Должна длительное время сохранять режущие свойства, а также выдерживать большие механические нагрузки в процессе эксплуатации.

Сама сталь для режущего инструмента бывают 3 -х типов:

  • быстрорежущие стали;
  • углеродистые;
  • легированные инструментальные.

Быстрорежущие стали (рапид)

Быстрорежущая сталь (рапид) используют для изготовления режущего инструмента, работающего на высоких оборотах. Обозначается «Р». Пример Р9, Р18.

Углеродистые инструментальные стали

Содержат в себе углерода до 1,3%. Применяются в слесарном инструменте и имеют обозначение «У». Пример: У7, У10, У12.

Легированные инструментальные стали

Содержат легирующие добавки в приделах до 3%. Применяется для изготовления свёрл, фрез и др. режущего инструмента. Пример: 11ХФ.

Стали для измерительных инструментов

Должна обладать твёрдостью и износостойкостью. К такому инструменту относят: штангенциркуль, линейки, калибры, шаблоны и т. д. Для повышенных классов точности применяют стали X, ХВГ, ШХ15. Для пониженных – сталь У10А, УПА, У12А.

Штамповочные стали

Главная задача штамповочной стали обладать высокой твёрдостью и износостойкостью.

Делятся штамповочные стали на:

  • стали для штампов холодного деформирования;
  • стали для штампов горячего деформирования.

Сталь для штампов холодного деформирования

Обладает высокой твёрдостью и износостойкостью, для обеспечения точного размера заготовки при штамповке.

Сталь для штампов горячего деформирования

Должна обладать всеми свойствами, что и стали холодного деформирования, а также работать в условиях высоких температур (до 600°С).

Классификация стали по содержанию углерода

Полный марочник сталей и сплавов

Классификация сталей и сплавов

Классификация сталей и сплавов

Что же такое Сталь? Многие полагают, что это просто железо, но железо это всего лишь химический элемент.

На самом деле Сталь — это сплав железа (Fe — Ferrum) с углеродом (C – Carboneum), в пропорциях Углерода от 0,02 до 2,14 % и Железа не менее 45%, остальное другие химические элементы.

Общей классификации сталей и сплавов не существует, потому что многие из них можно применять в самых различных областях промышленности, поэтому стали обычно классифицируют по данным признакам:

По химическому составу: углеродистые (без легирующих элементов), низколегированные, легированные, высоколегированные.

По качеству: сталь обыкновенного качества, качественная, высококачественная и особо качественная.

Главными критерием по качеству являются более жесткие требования по химическому составу и, главное по содержанию вредных примесей, таких как фосфор и сера.

Сталь углеродистую обыкновенного качества подразделяют на три группы:

  • А — поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
  • Б — поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их кроме условий обработки определяется химическим составом (БСт0, БСт1 и др.);
  • В — поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).

По требованиям к испытаниям механических свойств сталь подразделяют на пять категорий:

  • Iкатегория — Без испытания механических свойств на растяжение и ударную вязкость. Горячекатаная, кованая, калиброванная.
  • IIкатегория — С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из нормализованных заготовок размером 25 мм (диаметр или сторона квадрата). Горячекатаная, кованая, калиброванная.
  • IIIкатегория — С испытанием механических свойств на растяжение на образцах, изготовленных из нормализованных заготовок указанного в заказе размера, но не более 100 мм. Горячекатаная, кованая, калиброванная.
  • IVкатегория — С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из термически обработанных (закалка + отпуск) заготовок указанного в заказе размера, но не более 100 мм. Горячекатаная, кованая, калиброванная.
  • Vкатегория — С испытанием механических свойств на растяжение на образцах, изготовленных из сталей в нагартованном или термически обработанном состоянии (отожженной или высокоотпущенной). Калиброванная.

Легированную сталь по степени легирования разделяют: низколегированная (легирующих элементов до 2,5%), среднелегированная (от 2,5 до 10%), высоколегированная (от 10 до 50%).

Легирующие элементы — химические элементы, специально введенные в сталь для получения требуемых строения, структуры, физико-химических и механических свойств.

Основными легирующими элементами в сталях являются:

В некоторых сталях легирующими элементами могут быть также P (Фосфор), N (Азот), Se (Селен), Pb (Свинец) и др. Перечисленные элементы, а также H (Водород), O (Кислород), Sn (Олово), Sb (Сурьма), Bi (Висмут) могут быть и примесями в стали. Содержание легирующих элементов может колебаться от тысячных долей процента до десятков процентов.

Отнесение химических элементов к примесям или легирующим элементам зависит от их количества и роли в стали.

Легированные сталь — это сплавы на основе железа, в химический состав которых специально введены легирующие элементы, обеспечивающие при определенных способах производства и обработки требуемую структуру и свойства. В легированных сталях содержание отдельных элементов больше, чем этих же элементов в виде примесей.

Такие легирующие элементы, как V, Nb, Ti, Zn, B — могут оказывать существенное влияние на структуру и свойства стали при их содержании в стали в сотых долях процента. Иногда такие стали называют микролегированными.

К высоколегированным относят:

  • коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;
  • жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 50 гр. С, работающие в не нагруженном и слабонагруженном состоянии;
  • жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

Электротехническую тонколистовую сталь разделяют:

а. по структурному состоянию и виду прокатки на классы:

  • горячекатаная изотропная;
  • холоднокатаная изотропная;
  • холоднокатаная анизотропная с ребровой текстурой;
  1. по содержанию кремния:
  • 0 — до 0,4 %;
  • 1 — св. 0,4 до 0,8 %;
  • 2 — св. 0,8 до 1,8 %;
  • 3 — св. 1,8 до 2,8 %;
  • 4 — св. 2,8 до 3,8 %;
  • 5 — св. 3,8 до 4,8 %;

химический состав стали не нормируется;

  1. по основной нормируемой характеристике на группы:
  • 0 — удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц (P1,7/50);
  • 1 — удельные потери при магнитной индукции 1,5 Тл и частоте 50 Гц (P1,5/50);
  • 2 — удельные потери при магнитной индукции 1,0 Тл и частоте 400 Гц (P1,0/400);
  • 6 — магнитная индукция в слабых магнитных полях при напряженности поля 0,4 А/м (В 0, 4);
  • 7 — магнитная индукция в средних магнитных полях при напряженности поля 10 А/м (В10).

Сталь легированную конструкционную в зависимости от химического состава и свойств делят на качественную, высококачественную А и особо высококачественную Ш (электрошлакового переплава).

По видам обработки при поставке сталь бывает горячекатаная, кованая, калиброванная, серебрянка.

По назначению изготовляют прокат: для горячей обработки давлением и холодного волочения (прокат) и для холодной механической обработки.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]