Какие сплавы называются сталями

Классификация сталей

Сталь – сплав железа, содержащий менее 2,14% углерода и другим металлические и неметаллические компоненты. Она является одним из самых распространенных материалов и самым распространенным металлическим сплавом. Сталь применяется во всех отраслях хозяйства и во всех сферах жизни человека — от иголки шитья до корпуса атомного реактора и от винтика в дверном замке до пилона моста через пролив. За время развития металлургии для различных целей были разработаны сотни различных сортов, или марок сталей. Из них широко используются 7-8 десятков, остальные служат для специальных и редких применений.

Классификации сталей

Чтобы разобраться во всем многообразии марок, металлурги применяют несколько классификаций:

  • по химическому составу;
  • по структуре;
  • по назначению;
  • по качеству;
  • по степени раскисления.

Существуют и другие классификации, но их применение ограничивается научными и узкоспециальными областями применения.

Классификация по химическому составу

По химическому составу классификацию проводя, подразделяя на: углеродистые и легированные стали, которые, в свою очередь, подразделяются на:

Содержание углерода не влияет на степень легирования, Если доля Mn превышает 1%, а Si- 0,9%, они также признаются легирующими добавками

Классификация по структуре

Структура стали, кроме ее химического состава, зависит от многих факторов, влиявших на нее на этапах отливки и термической обработки. Классификация по структуре после процедуры отжига, во время которого заготовку нагревают до температуры пластичности и медленно охлаждают прямо в печи, следующая:

  • доэвтектоидные – с избыточными ферритовыми включениями;
  • эвтектоидные – ферриты замещаются перлитами;
  • заэвтектоидные – с включениями вторичных карбидов;
  • ледебуритные – с включениями первичных карбидов;
  • аустенитные;
  • ферритные.

После проведения процедуры нормализации, заключающейся в нагревании до температуры пластичности и остывании на открытом воздухе, классификация различает такие группы, как:

Классификация по степени раскисления

Процесс раскисления приводит к снижению содержания кислорода в расплаве. Классификация предусматривает такие классы, как:

Основными раскислительными добавками служат Mn, Al, Si.

Классификация сталей по степени раскисления

Классификация стали по содержанию примесей

Кроме классификации по содержанию углерода и по степени раскисления, применяется классификация по качеству, определяемому методом производства и содержанием вредных примесей, прежде всего, серы и фосфора. Классификация сталей по качеству:

В Российской Федерации и странах СНГ маркировка состоит из цифровых и буквенных позиционных обозначений. На первом месте располагаются одна или две цифры, показывающие процент содержания углерода.

Если его больше одного процента, используют две цифры, если меньше — то одну, и значение показывается в десятых долях.

Пример расшифровки маркировки стали

Далее идут группы, обозначающие тип и содержание легирующих присадок

Буквенные коды элементов можно посмотреть здесь: буквенные обозначения легирующих присадок

Если содержание элемента больше одного процента, то указывается содержание в процентах, если меньше — остается только буква.

В конце кода может быть добавлена буквы А или АА, обозначающая содержание фосфора и серы и соответствующая качественным и высококачественным категориям.

Маркировка нержавеющей сварочной проволоки

Добавляют также и буквы, указывающие на степень раскисления:

  • кп — кипящая;
  • пс — полуспокойная;
  • сп — спокойная.

В США и Западной Европе, а также в Китае и Японии приняты свои способы классификации и маркировки сталей. Таблицы соответствия содержатся в марочниках.

Занятие 6. Сталью называется сплав железа с углеродом, в котором углерода

Стали

Сталью называется сплав железа с углеродом, в котором углерода

содержится не более 2,14%. Это теоретическое определение. На практике в сталях, как правило, не содержится углерода более 1,5%.

Влияние углерода и примесей на свойства стали. Углерод существенно

влияет на свойства стали даже при незначительном изменении ею содержания. В стали имеются две фазы — феррит и цементит (частично в виде перлита). Количество цементита возрастает прямо пропорционально содержанию углерода. Как уже говорилось, феррит характеризуется высокой пластичностью и низкой твердостью, а цементит, напротив, очень низкой пластичностью и высокой твердостью. Поэтому с повышением содержания углерода до 1,2% снижаются пластичность и вязкость стали и повышаются твердость и прочность. Повышение содержания углерода влияет и на технологические свойства стали. Ковкость, свариваемость и обрабатываемость резанием ухудшаются, но литейные свойства улучшаются.

Кроме железа и углерода в стали всегда присутствуют постоянные примеси.

Наличие примесей объясняется технологическими особенностями производства стали (марганец, кремний) и невозможностью полного удаления примесей,

попавших в сталь из железной руды (сера, фосфор, кислород, водород, азот).

Возможны также случайные примеси (хром, никель, медь и др.).

Марганец и кремний вводят в любую сталь для раскисления, т.е. для удаления вредных примесей оксида железа FeO. Марганец также устраняет

вредные сернистые соединения железа. При этом содержание марганца обычно не превышает 0,8%, а кремния — 0,4%. Марганец повышает прочность, а кремний упругость стали.

Фосфор растворяется в феррите, сильно искажает кристаллическую решетку,

снижая при этом пластичность и вязкость, но повышая прочность. Вредное влияние фосфора заключается в том, что он сильно повышает температуру перехода стали в хрупкое состояние, т.е. вызывает ее хладноломкость. Вредность фосфора усугубляется тем, что он может распределяться в стали неравномерно. Поэтому содержания фосфора в стали ограничивается величиной 0,045%.

Сера также является вредной примесью. Она нерастворима в железе и

образует с ним сульфид железа FeS, который образует с железом легкоплавкую эвтектику. Эвтектика располагается по границам зерен и делает сталь хрупкой при высоких температурах. Это явление называется красноломкостью. Количество серы в стали ограничивается 0,05%.

Водород, азот и кислород содержатся в стали в небольших количествах.

Они являются вредными примесями, ухудшающими свойства стали.

Классификация сталей.По химическому составу стали могут быть

углеродистыми, содержащими железо, углерод и примеси и легированными,

содержащими дополнительно легирующие элементы, введенные в сталь с целью изменения ее свойств.

По содержанию углерода стали делятся на низкоуглеродистые (до 0,25% С),

среднеуглеродистые (0,25 — 0,7% С) и высокоуглеродистые (более 0,7% С).

По назначению различают стали конструкционные, идущие на изготовление

деталей машин, конструкций и сооружений, инструментальные, идущие на

изготовление различного инструмента, а также стали специального назначения с особыми свойствами: нержавеющие, жаростойкие, жаропрочные, износостойкие, с особыми электрическими и магнитными свойствами и др.

По показателям качества стали классифицируются на обыкновенного

качества, качественные, высококачественные и особо высококачественные.

Качество стали характеризуется совокупностью свойств, определяемых процессом производства, химическим составом, содержанием газов и вредных примесей (серы и фосфора). В соответствии с ГОСТом стали обыкновенного качества должны содержать не более 0,045% Р и 0,05% S, качественные — не более 0,035% Р и 0,04% S, высококачественные — не более 0,025% Р и 0,025% S и особовысококачественные — не более 0,025% Р и 0,015% S. Углеродистые конструкционные стали могут быть только обыкновенного качества и качественными.

Углеродистые стали обыкновенного качествав зависимости от назначения и гарантируемых свойств делятся натри группы: А. Б и В.

Стали группы А имеют гарантируемые механические свойства. Они

используются в состоянии поставки без горячей обработки или сварки. Эти стали маркируются буквами Ст и цифрами, обозначающими порядковый номер марки. Выпускается семь марок сталей группы А: Ст0, Ст1, Ст2, Ст6. Чем выше номер марки, тем больше содержание углерода и, соответственно, выше прочность и ниже пластичность.

Стали группы Б имеют гарантируемый химический состав. Эти стали

подвергаются горячей обработке. При этом их механические свойства не

сохраняются, а химический состав важен для определения режима обработки.

Маркируются они так же, как стали группы А, но перед буквами Ст ставится буква Б. Чем выше номер марки, тем больше содержание в стали углерода, марганца и кремния.

Стали группы В имеют гарантируемые механические свойства и химический

Читать еще:  Гидроабразивная очистка металла

состав. Эти стали используются для сварки, так как для выбора режима сварки надо

знать химический состав, а механические свойства частей изделий, не

подвергшихся тепловому воздействию, остаются без изменений. В марках сталей этой группы на первое место ставится буква В. При этом механические свойства соответствуют свойствам аналогичной марки из группы А, а химический состав — составу аналогичной марки из группы Б.

Качественные конструкционные углеродистыестали маркируются

цифрами 08, 10, 15, 20, 25, 85, которые обозначают среднее содержание углерода в сотых долях процента. Эти стали отличаются от сталей обыкновенного качества большей прочностью, пластичностью и ударной вязкостью. Если для сталей обыкновенного качества максимальная прочность составляет 700 МПа, то для качественной она достигает 1100 Мпа.

Сплавы, их классификация и применение.

Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов. Читайте подробнее о их классификации и применении.

Сплавы ― это макроскопически однородные материалы, имеющие металлические свойства и состоящие из смеси двух или большего числа химических элементов, из которых хотя бы один является металлом. Многие металлические сплавы имеют один или несколько металлов в качестве основы с малыми добавками других специально вводимых в сплав легирующих и модифицирующих элементов. Также в составе сплава могут содержаться неудалённые примеси (природные, технологические и случайные).

По способу изготовления различают два типа сплавов:

  • Литые сплавы изготавливаются самым распространенным способом – кристаллизацией однородной смеси их расплавленных компонентов.
  • Порошковые сплавы образуются путем прессования смеси порошков компонентов с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.

По способу получения заготовки (изделия) различают два типа сплавов:

  • литейные (например, чугуны, силумины);
  • деформируемые (например, стали) и порошковые сплавы.

В промышленности используют большое количество сплавов – конструкционных, инструментальных, специальных (см. Табл. 1, 2). Их различают по назначению:

Конструкционные сплавы со специальными свойствами (например, искробезопасность, антифрикционные свойства):

Сплавы для заливки подшипников:

Сплавы для измерительной и электронагревательной аппаратуры:

Для изготовления режущих инструментов:

В промышленности также используются жаропрочные, легкоплавкие и коррозионностойкие сплавы, термоэлектрические и магнитные материалы, а также аморфные сплавы.

Число металлических сплавов, применяемых в наши дни, очень велико и непрерывно растет. Их принято разделять на две большие категории: сплавы на основе железа и сплавы цветных металлов. Ниже перечислим наиболее важные сплавы промышленного значения и укажем основные области их применения.

Сплавы железа с углеродом, содержащие его до 2%, называются сталями. При введении легирующих элементов, таких, как хром, ванадий, никель, сталь становится легированной. Из всех видов металлов и сплавов, стали занимают первое место по объему их производства. Сфера их применения чрезвычайно широка, сложно было бы перечислить все возможные варианты. В общем можно сказать, что малоуглеродистые стали (менее 0,25% углерода) используется в качестве конструкционного материала, а стали с более высоким содержанием углерода (более 0,55%) идут на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали применяются в машиностроении всех видов и в производстве быстрорежущих инструментов.

Чугуном называют сплав железа с 2–4% углерода. Кроме того, важным компонентом чугуна является кремний. Из чугуна отливают самые разнообразные изделия, имеющие утилитарные функции, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала.

Такие сплавы в основном представлены различными видами латуни, т.е. медными сплавами, содержащими от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20–36% Zn – желтой (альфа-латунью). Латуни применяются в производстве различных мелких деталей, где требуются хорошая обрабатываемость и формуемость. Популярны также сплавы меди с оловом, кремнием, алюминием или бериллием – это бронзы. Например, сплав меди с кремнием ― кремнистая бронза. Фосфористая бронза (медь с 5% олова и следовыми количествами фосфора) обладает высокой прочностью и применяется для изготовления пружин и мембран.

Такие сплавы широко применяются для пайки. Обычный припой (третник) состоит из одной части свинца и двух частей олова. Он широко применяется для соединения (пайки) трубопроводов и электропроводов. Кроме того, из сурьмяно-свинцовых сплавов делают оболочки телефонных кабелей и пластины аккумуляторов. Сплавы свинца с определенным количеством кадмия, олова и висмута могут иметь точку плавления, лежащую значительно ниже точки кипения воды (

70° C); по этой причине из них делают плавкие пробки клапанов спринклерных систем противопожарного водоснабжения. Сплав пьютер, из которого до сих пор производят декоративную посуду и украшения, содержит 85–90% олова (остальное – свинец). Свинец содержится в подшипниковых сплавах, называемых баббитами, в них также присутствуют такие химические элементы, как олово, сурьма и мышьяк.

В современной промышленности необходимы легкие сплавы с высокой прочностью, обладающие хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.

К этим сплавам относятся литейные сплавы (алюминий Al – кремний Si), сплавы для литья под давлением (алюминий Al – магний Mg) и самозакаливающиеся сплавы повышенной прочности (алюминий Al – медь Cu). Алюминиевые сплавы экономичны, легкодоступны, они достаточно прочны при низких температурах и легко обрабатываются (легко куются, штампуются, пригодны для глубокой вытяжки, волочения, экструдирования, литья, хорошо свариваются и обрабатываются на металлорежущих станках). Необходимо заметить, что механические свойства всех алюминиевых сплавов заметно ухудшаются при температурах выше приблизительно 175° С. Но благодаря образованию защитной оксидной пленки на поверхности алюминиевые сплавы проявляют хорошую коррозионную стойкость в большинстве обычных агрессивных сред. Эти сплавы хорошо проводят электричество и тепло, обладают высокой отражательной способностью, немагнитны, безвредны в контакте с пищевыми продуктами (поскольку продукты коррозии бесцветны, не имеют вкуса и нетоксичны), взрывобезопасны (поскольку не дают искр) и хорошо поглощают ударные нагрузки. Благодаря такому сочетанию свойств алюминиевые сплавы служат хорошими материалами для легких поршней, применяются в вагоно-, автомобиле- и самолетостроении, в пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве осветительных отражателей, технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи.

Примесь железа, от которой трудно избавиться, повышает прочность алюминия при высоких температурах, но снижает коррозионную стойкость и пластичность при комнатной температуре. Кобальт, хром и марганец ослабляют охрупчивающее действие железа и повышают коррозионную стойкость. При добавлении лития к алюминию повышаются модуль упругости и прочность, что делает такой сплав весьма привлекательным для авиакосмической промышленности. К сожалению, при своем превосходном отношении предела прочности к массе (удельной прочности) сплавы алюминия с литием обладают низкой пластичностью.

Магниевые сплавы легки, характеризуются высокой удельной прочностью, а также хорошими литейными свойствами и превосходно обрабатываются резанием. Поэтому они применяются для изготовления деталей ракет и авиационных двигателей, корпусов для автомобильной оснастки, колес, бензобаков, портативных столов и т.п. Некоторые магниевые сплавы, обладающие высоким коэффициентом вязкостного демпфирования, идут на изготовление движущихся частей машин и элементов конструкции, работающих в условиях нежелательных вибраций.

Магниевые сплавы имеют свои недостатки, они довольно мягки, плохо сопротивляются износу и не очень пластичны. Зато они легко формуются при повышенных температурах, пригодны для электродуговой, газовой и контактной сварки, а также могут соединяться пайкой (твердым), болтами, заклепками и клеями. Такие сплавы не отличаются особой коррозионной стойкостью по отношению к большинству кислот, пресной и соленой воде, но стабильны на воздухе. От коррозии их обычно защищают поверхностным покрытием – хромовым травлением, дихроматной обработкой, анодированием. Магниевым сплавам можно также придать блестящую поверхность либо плакировать медью, никелем и хромом, нанеся предварительно покрытие погружением в расплавленный цинк. Анодирование магниевых сплавов повышает их поверхностную твердость и стойкость к истиранию. Магний – металл химически активный, а потому необходимо принимать меры, предотвращающие возгорание стружки и свариваемых деталей из магниевых сплавов.

Читать еще:  Химическое травление металла в домашних условиях

Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот.

Титановые сплавы ковки до температур около 1150° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150–430° C), а также в некоторых химических аппаратах специального назначения. Из титано-ванадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титан-алюминиево-ванадиевый сплав – основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов.

Пластичный бериллиевый сплав можно получить, например, вкрапляя хрупкие зерна бериллия в мягкую пластичную матрицу, такую, как серебро. Сплав этого состава удалось холодной прокаткой довести до толщины, составляющей 17% первоначальной. Бериллий превосходит все известные металлы по удельной прочности. В сочетании с низкой плотностью это делает бериллий пригодным для устройств систем наведения ракет. Модуль упругости бериллия больше, чем у стали, и бериллиевые бронзы применяются для изготовления пружин и электрических контактов. Чистый бериллий используется как замедлитель и отражатель нейтронов в ядерных реакторах. Благодаря образованию защитных оксидных слоев он устойчив на воздухе при высоких температурах. Главная трудность, связанная с бериллием, – его токсичность. Он может вызывать серьезные заболевания органов дыхания и дерматит.

Какие стали называются автоматными и где они применяются

У классической конструкционной стали высокая прочность, устойчивость к охлаждению и перегреву, отсутствие вредных примесей. Однако эти преимущества могут легко превратиться в недостатки материала в том случае, если речь идет об изготовлении метизов. Для решения этой проблемы инженерами была разработана так называемая автоматная сталь (автомат-сталь).

В состав этого сплава дополнительно вносятся сера или фосфор, а также различные дополнительные элементы — селен, свинец, теллур и некоторые другие. Это делает материал более ломким, поэтому работать с ним на станках гораздо легче.

Автоматные стали имеют специальную маркировку, которая позволяет однозначно отличить материал от других сплавов. Но какие стали называются автоматными? Какими химическими и физическими свойствами обладает автоматная сталь? Как маркируется этот материал и в каких сферах металлургии он используется чаще всего? В нашей статье мы в деталях рассмотрим все эти вопросы.

Что такое конструкционная сталь?

С точки зрения металлургии автомат-сталь является подвидом конструкционной стали, поэтому сперва рассмотрим этот материал, чтобы понять основные отличия сплавов. Конструкционная сталь — это стальной сплав на основе железа и углерода. Особенность этих сплавов с химической точки зрения — минимальное содержание серы и фосфора (во время выплавки используется специальные техники очистки, которые позволяют искусственным способом понизить содержание этих элементов).

Почему металлургам так важно избавиться от этих присадок? Дело все в том, что сера и фосфор снижают физические свойства стального сплава:

  • Сера — этот элемент делает сплав хрупким и ломким, а во время холодной обработки такой материал может серьезно растрескаться, что сделает его бесполезным в использовании.
  • Фосфор — этот элемент также снижает прочность стального сплава + при тепловой обработке из-за фосфора также могут появиться трещины в материале.

Согласно нормам ГОСТ содержание фосфора и серы в конструкционной стали должно составлять не более 0,05%, хотя встречаются и более качественные прочные сплавы с содержанием вредных примесей в более низкой концентрации. Такие материалы называют качественным (концентрация серы и фосфора — до 0,035 %), высококачественными (до 0,025%) и сверхвысококачественными (до 0,015%).

Что такое автоматная сталь?

Как мы уже выяснили ранее, фосфор и сера — это вредные примеси, содержание которых стараются минимизировать в итоговом сплаве, поскольку они ухудшают качество стали. Однако существует особый класс стальных конструкционных сплавов, где фосфор и сера могут содержаться в значительных количествах — это класс называют автоматной сталью.

Дело все в том, что при изготовлении сложных небольших деталей на станках-автоматах не требуется сверхпрочный материал — зато нужен пластичный материал, который легко и быстро обрабатывать.

Именно поэтому в автоматной стали допускается повышенное содержание примесей — фосфора или серы + различных дополнительных элементов (хрома, никеля, селена, свинца и других). Оптимальная температура ковки автоматной стали — от +950 до +1200 градусов по Цельсию.

Автомат-сталь используется для поточного производства метизов — болтов, гаек, шурупов, осей, валиков, фрагментов цепей и так далее. Также этот материал подходит для производства мелких автомобильных деталей сложной формы и конфигурации — зубцовых передаточных механизмов, колец полуосей машин, валиков масляного насоса и так далее. Выплавка автоматной стали контролируется государственным нормами ГОСТ 1414-75. Согласно ГОСТ автоматная сталь должна удовлетворять следующим требованиям:

  • Высокое качество надлома стружки (при обработке на станке очень важно быстро удалять стружку, которое образуется в больших количествах во время работы).
  • Низкая шероховатость поверхности (в противном случае деталь может получиться неоднородной по своей структуре, что критично при изготовлении мелких деталей сложной формы, где каждый изгиб имеет определенное конструктивное значение).
  • Минимальный износ режущего инструмента (в противном случае режущий станок очень быстро придет в негодность, что сделает себестоимость деталей очень высокой).
  • Есть возможность резать объект на высокой скорости (это позволяет снизить конечную стоимость детали, что минимизирует расходы на электричество и улучшает себестоимость такого способа обработки).

Физические свойства и изготовление автоматной стали

Физические свойства автомат-стали очень похожи на свойства обыкновенной конструкционной стали. Отличительные свойства автоматных сталей обуславливаются вхождением в состав материала различных примесей — в первую очередь это сера и фосфор, однако в состав автомат-стали могут входить и некоторые другие добавки (свинец, селен, кальций, марганец, теллур и другие). Также большое значение имеет способ выплавки и последующей обработки (диффузный отжиг, цементация, закалка и другие). Ниже мы кратко рассмотрим все основные примеси и способы правильной обработки.

Легирующие добавки

Согласно регулирующему ГОСТ 1414-75 в состав автоматной стали могут входить следующие добавки:

  • Сера (не более 0,2%). Улучшает надлом стружки за счет снижения прочности сплава, что делает возможным станочную обработку стального материала. Помимо этого сера оказывает вяжущий и смазывают эффект, что снижает шероховатость поверхности. В большинстве случаев сера вводится в состав сплава в виде марганцевых сульфидов, поэтому достаточно часто автоматные стали помимо серы содержат марганец.
  • Фосфор (до 0,15%). По своим свойствам очень похож на серу — улучшает надлом стружки, снижает шероховатость и так далее.
  • Селен. Позволяет дополнительно повысить надлом, но одновременно и сохранить высокую прочность сплава. К тому же селен позволяет сохранить режущий инструмент острым, что положительно сказывается на сроке годности автомат-станка.
  • Свинец. Повышает стойкость режущего инструмента станка, а также увеличивает срок обработки материала, что благоприятно сказывается на себестоимости деталей.
  • Кальций. Во время резки кальций создает на поверхности металла тонкий слой, который улучшает резку и скорость обработки. Некоторые дополнительные свойства кальция — снижает вероятность прилипания стружки к металлу, увеличивает срок годности режущего инструмента и так далее.
  • Марганец. Практически не влияет на свойства автоматной стали, однако содержится во многих автоматных сплавах, поскольку сера в сплав вносится в виде марганцевого сульфида, а после расплавки марганец остается в материале в виде добавочного компонента в небольших концентрациях (обычно не более 0,01%).
Читать еще:  Как сделать пескоструйный аппарат своими руками

Физическая обработка

При выплавке помимо внесения дополнительных компонентов автоматная сталь обычно подвергается обжигу при температуре около 1300 градусов по Цельсию. Цель подобного обжига — обеспечить равномерное распределение фосфора и серы по всему объему стального сплава (в противном случае некоторые фрагменты металла будут хрупкими, а некоторые фрагменты — сверхтвердыми).

Также во время обработки материал может подвергаться цементированию и закалке — это позволяет получить более прочным пластичный материал, который будет легко резаться + он не будет портить режущую поверхность автомат-станка. Основные методы выплавки автомат-стали — мартеновский метод и конвертерная техника.

Преимущества и недостатки автоматной стали

Преимущества автоматной стали:

  • Простота обработки с помощью автомат-станков — можно получить как обычные детали (болты, гайки, шурупы), так и различные объекты сложной формы и конфигурации (различные шестерни, сложные валики с выемками, различные передаточные механизмы и так далее).
  • Высокая скорость обработки, отличное качество резки и низкая степень порчи резаков на станках. Это снижает себестоимость деталей.
  • Некоторые другие плюсы — простота выплавки, неплохая прочность, большой срок годности деталей, возможность внесения различных присадок для изменения физических свойств материала и так далее.

Главные минусы — наличие серы и фосфора, что снижает вязкость и пластичность конечных деталей. Особенно критично это в случае автомобильных деталей, когда поломка того или иного агрегата может представлять угрозу для жизни человека. К тому же нужно помнить, что фосфор и сера делают материал хрупким при резком перепаде температур, поэтому детали из автоматной стали использовать в помещениях со стабильными температурами.

Маркировка автомат-стали

Согласно нормирующим требования ГОСТ 1414-75 обозначается с помощью большой буквы A, которая указывает на то, что данный материал рекомендуется использоваться для обработки с помощью автоматных станков. После буквы А обычно ставится число, которое указывает на общую концентрацию углерода (единицы измерения — сотые доли процента). Если в состав материала входят какие-либо дополнительные присадки (марганец, селен, хром или свинец), то в таком случае это также указывается в названии материала согласно номенклатуре ГОСТ.

Какие сплавы называются сталями

Металлы и сплавы


В промышленности металлы применяются в основном в виде сплавов: черных (чугун, сталь) и цветных (бронза, латунь, дюралюминий и др.)

.
Сталь и чугун — это сплавы железа с углеродом. Но в стали содержание углерода немного меньше, чем в чугуне.

В чугуне содержится от 2 до 4% углерода. В состав чугуна входят также кремний, марганец, фосфор и сера. Чугун — хрупкий твердый сплав. Поэтому его используют в тех изделиях, которые не будут подвергаться ударам. Например, из чугуна отливают радиаторы отопления, станины станков и другие изделия.

Сталь, как и чугун, имеет примеси кремния, фосфора, серы и других элементов, но в меньшем количестве.
Сталь не только прочный, но и пластичный металл. Благодаря этому она хорошо поддается механической обработке. Сталь бывает мягкой и твердой.


Более твердая сталь используется для изготовления проволоки, гвоздей, шурупов, заклепок и других изделий.

Из очень твердой стали делают металлические конструкции (конструкционная сталь) и режущие инструменты (инструментальная сталь). Инструментальная сталь имеет большую, чем конструкционная, твердость и прочность.

Добавление в сталь таких элементов, как хром, никель, вольфрам, ванадий, позволяет получить сплавы с особыми физическими свойствами — кислотостойкие, нержавеющие, жаропрочные и т. д.

Чугун выплавляют из железной руды в доменных печах. Руду вместе с коксом (специально обработанным углем, который дает при горении высокую температуру) загружают в доменную печь сверху. Снизу в домну все время вдувают чистый горячий воздух, чтобы кокс лучше горел. Внутри печи образуется высокая температура, руда плавится, и полученный чугун стекает на дно печи. Расплавленный металл вытекает из отверстия домны в ковши. Из смеси чугуна со стальным ломом в мартеновских печах, конверторах и электропечах получают сталь.


Из цветных сплавов наиболее широко применяются бронза, латунь и дюралюминий.

Бронза — желто-красный сплав на основе меди с добавлением олова, алюминия и других элементов. Отличается высокой прочностью, стойкостью против коррозии. Из бронзы отливают художественные изделия, делают сантехническую арматуру, трубопроводы, детали, работающие в условиях трения и повышенной влажности.

Латуньсплав меди с цинком, желтого цвета. Имеет высокую твердость, пластичность, коррозийную стойкость. Выпускается в виде листов, проволоки, шестигранного проката и применяется чаще всего для изготовления деталей, работающих в условиях повышенной влажности.

Дюралюминийсплав алюминия с медью, цинком, магнием и другими металлами, серебристого цвета. Обладает высокими антикоррозийными свойствами, хорошо обрабатывается. Дюралюминий широко применяют в авиастроении, машиностроении и строительстве, где требуются легкие и прочные конструкции.

Основные свойства металлов

Вы знаете, что металлы обладают различными свойствами. Одни из них мягкие, вязкие, другие твердые, упругие или хрупкие. Знать свойства металлов необходимо для того, чтобы правильно определить наиболее подходящий для того или иного изделия материал.

Физические свойства.

К этим свойствам относятся: цвет, удельный вес, теплопроводность, электропроводность, температура плавления.

Цвет металла или сплава является одним из признаков, позволяющих судить о его свойствах.
Металлы различаются по цвету. Например, стальсероватого цвета, цинксиневато-белого, медьрозовато-красного.
При нагреве по цвету поверхности металла можно примерно определить, до какой температуры он нагрет, что особо важно для сварщиков. Однако некоторые металлы (алюминий) при нагреве не меняют цвета.

Поверхность окисленного металла имеет иной цвет, чем не окисленного.

Удельный весвес одного кубического сантиметра вещества, выраженный в граммах. Например, углеродистая сталь имеет удельный вес, равный 7,8 г/см3. В авто- и авиастроении вес деталей является одной из важнейших характеристик, поскольку конструкции должны быть не только прочными, но и легкими. Чем больше удельный вес металла, тем более тяжелым (при равном объеме) получается изделие.

Теплопроводностьспособность металла проводить тепло — измеряется количеством тепла, которое проходит по металлическому стержню сечением в 1 см2 за 1 мин. Чем больше теплопроводность, тем труднее нагреть кромки свариваемой детали до нужной температуры.

Температура плавлениятемпература, при которой металл переходит из твердого состояния в жидкое. У стали, например, температура плавления гораздо более высокая, чем у олова.

Чистые металлы плавятся при одной постоянной температуре, а сплавы — в интервале температур.

Механические свойства.

К механическим свойствам металлов и сплавов относятся прочность, твердость, упругость, пластичность, вязкость.
Эти свойства обычно являются решающими показателями, по которым судят о пригодности металла к различным условиям работы.

Прочность способность металла сопротивляться разрушению при действии на него нагрузки.

Твердостьспособность металла сопротивляться внедрению в его поверхность другого более твердого тела. Если ударить молотком по кернеру, поставленному на стальную пластинку, образуется небольшая лунка. Если то же самое сделать с пластинкой из меди, лунка будет больше. Это свидетельствует о том, что сталь тверже меди.

Упругостьсвойство металла восстанавливать свою форму и размеры после прекращения действия нагрузки. Высокой упругостью должна обладать, например, рессоры и пружины, поэтому они изготовляются из специальных сплавов. Попробуйте одновременно растянуть и отпустить пружины из стальной и медной проволоки. Вы увидите, что первая вновь сожмется, а вторая останется в том же положении. Значит, сталь более упругий материал, чем медь.

Пластичностьспособность металла изменять форму и размеры под действием внешней нагрузки и сохранять новую форму и размеры после прекращения действия сил. Пластичность — свойство, обратное упругости. Чем больше пластичность, тем легче металл куется, штампуется, прокатывается.

Вязкостьспособность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Например, если наносить удары по чугунной плите, она разрушится. Чугун — хрупкий металл. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали вагонов, автомобилей и т. п.).

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]