Содержание

Почему медь не магнитится

Какие металлы не магнитятся к магниту список

Любой ребенок знает, что металлы притягиваются к магнитам. Ведь они не раз вешали магнитики на металлическую дверцу холодильника или буквы с магнитиками на специальную доску. Однако, если приложить ложку к магниту, притяжения не будет. Но ведь ложка тоже металлическая, почему тогда так происходит? Итак, давайте выясним, какие металлы не магнитятся.

Научная точка зрения

Чтобы определить, какие металлы не магнитятся, нужно выяснить, как все металлы вообще могут относиться к магнитам и магнитному полю. По отношению к внесенному магнитному полю все вещества делят на диамагнетики, парамагнетики и ферромагнетики.

Каждый атом состоит из положительно заряженного ядра и отрицательно заряженных электронов. Они непрерывно движутся, что создает магнитное поле. Магнитные поля электронов одного атома могут усиливать друг друга или уничтожать, что зависит от направления их движения. Причем скомпенсированы могут быть:

  • Магнитные моменты, вызванные движением электронов относительно ядра – орбитальные.
  • Магнитные моменты, вызванные вращением электронов вокруг своей оси — спиновые.

Если все магнитные моменты равны нулю, вещество относят к диамагнетикам. Если скомпенсированы только спиновые моменты — к парамагнетикам. Если поля не скомпенсированы – к ферромагнетикам.

Парамагнетики и ферромагнетики

Рассмотрим вариант, когда у каждого атома вещества есть свое магнитное поле. Эти поля разнонаправлены и компенсируют друг друга. Если же рядом с таким веществом положить магнит, то поля сориентируются в одном направлении. У вещества появится магнитное поле, положительный и отрицательный полюс. Тогда вещество притянется к магниту и само может намагнититься, то есть будет притягивать другие металлические предметы. Так, например, можно намагнитить дома стальные скрепки. У каждой появится отрицательный и положительный полюс и можно будет даже подвесить целую цепочку из скрепок на магнит. Такие вещества называют парамагнитными.

Ферромагнетики — небольшая группа веществ, которые притягиваются к магнитам и легко намагничиваются даже в слабом поле.

Диамагнетики

У диамагнетиков магнитные поля внутри каждого атома скомпенсированы. В этом случае при внесении вещества в магнитное поле к собственному движению электронов добавится движение электронов под действием поля. Это движение электронов вызовет дополнительный ток, магнитное поле которого будет направлено против внешнего поля. Поэтому диамагнетик будет слабо отталкиваться от расположенного рядом магнита.

Итак, если подойти с научной точки зрения к вопросу, какие металлы не магнитятся, ответ будет – диамагнитные.

Распределение парамагнетиков и диамагнетиков в периодической системе элементов Менделеева

Магнитные свойства простых веществ периодично изменяются с увеличением порядкового номера элемента.

Вещества, не притягивающиеся к магнитам (диамагнетики), располагаются преимущественно в коротких периодах – 1, 2, 3. Какие металлы не магнитятся? Это литий и бериллий, а натрий, магний и алюминий уже относят к парамагнетикам.

Вещества, притягивающиеся к магнитам (парамагнетики), расположены преимущественно в длинных периодах периодической системы Менделеева – 4, 5, 6, 7.

Однако последние 8 элементов в каждом длинном периоде также являются диамагнетиками.

Кроме того, выделяют три элемента – углерод, кислород и олово, магнитные свойства которых различны у разных аллотропных модификаций.

К тому же называют еще 25 химических элементов, магнитные свойства которых установить не удалось вследствие их радиоактивности и быстрого распада или сложности синтеза.

Магнитные свойства лантаноидов и актиноидов (все они являются металлами) меняются незакономерно. Среди них есть и пара- и диамагнетики.

Выделяют особые магнитоупорядоченные вещества – хром, марганец, железо, кобальт, никель, свойства которых изменяются незакономерно.

Какие металлы не магнитятся: список

Ферромагнетиков, то есть металлов, которые хорошо магнитятся, в природе существует всего 9. Это железо, кобальт, никель, их сплавы и соединения, а также шесть металлов- лантаноидов: гадолиний, тербий, диспрозий, гольмий, эрбий и тулий.

Металлы, притягивающиеся только к очень сильным магнитам (парамагнетики): алюминий, медь, платина, уран.

Поскольку в быту не встречаются настолько большие магниты, которые бы притянули парамагнетик, а также не встречаются металлы-лантаноиды, можно смело утверждать, что все металлы, кроме железа, кобальта, никеля и их сплавов не будут притягиваться к магнитам.

Итак, какие металлы не магнитятся к магниту:

  • парамагнетики: алюминий, платина, хром, магний, вольфрам;
  • диамагнетики: медь, золото, серебро, цинк, ртуть, кадмий, цирконий.

В целом можно сказать, что черные металлы притягиваются к магниту, цветные – не притягиваются.

Если говорить о сплавах, то сплавы железа магнитятся. К ним относят в первую очередь сталь и чугун. К магниту могут притянуться и драгоценные монеты, поскольку они изготовлены не из чистого цветного металла, а из сплава, который может содержать небольшое количество ферромагнетика. А вот украшения из чистого цветного металла к магниту не притянутся.

Какие металлы не ржавеют и не магнитятся? Это обычная пищевая нержавейка, золотые и серебряные изделия.

Какой металл не магнитится

Автор Марина Сивцова задал вопрос в разделе Естественные науки

какой металл не притягивает магнит? и получил лучший ответ

Ответ от Evgeny M.[гуру]Любые диамагнетики не притягивают магнит, а наоборот отталкивают его.
Это, например, такие диамагнитные металлы, как Cu-медь, Au-золото, Zn-цинк, Hg-ртуть, Ag-серебро, Cd-кадмий, Zr-цирконий и др.
А вот парамагнитные металлы, типа Алюминия, притягиваются к магниту. Просто, когда они находятся не в ферромагнитной фазе, то такое притяжение очень слабенькое и без приборов незаметное. Типичный пример, это алюминий. При комнатной температуре он находится не в ферромагнитной фазе, а в обычной парамагнитной фазе. Поэтому, если его просто держать руками и поднести к магниту, то притяжение не почувствуете. А вот если повесить кусок алюминия рядом с магнитом на длинной нитке, то нить чуть отклонится от вертикали.

Как я успел заметить эта монета была отчеканена
на Московском монетном дворе (ММД) ,
подробнее.

цифровая электроника вычислительная техника встраиваемые системы

Типы металлов, которые притягиваются магнитами

Различные материалы по-разному реагируют в присутствии магнитов и магнитного поля. Металлы, такие как железо, никель и кобальт, сильно притягиваются к магнитам, и они известны как ферромагнитные металлы. Другие материалы могут слабо притягиваться, и есть даже металлы, которые отталкиваются от магнитов. Черные металлы не только притягиваются магнитами, но и могут намагничиваться, будучи подвергнутыми воздействию магнитного поля.

Ферромагнитные металлы

Ферромагнитные металлы сильно притягиваются к объектам с магнитнымм полями и могут сохранять свои магнитные свойства после удаления магнита от них. Они используются для создания постоянных магнитов. Основными ферромагнитными металлами являются железо, никель, кобальт, гадолиний и диспрозий. Если вы держите кусок ферромагнитного металла рядом с магнитом, то ощутите достаточно сильное притяжение.

Ферромагнитные сплавы

Ферромагнитные сплавы представляют собой материалы, такие как сталь, которая содержит ферромагнитные металлы. Сталь представляет собой комбинацию железа и нескольких других металлов и имеет большую твердость, чем железо. Из-за этой твердости сталь может сохранить свой магнетизм дольше, чем железо. При нагревании до высокой температуры сталь теряет свои магнитные свойства. Это также произойдет с ферромагнитными металлами, такими как никель.

Ферримагнитные материалы

Ферримагнитные материалы представляют собой ферриты, магнетит и магний. Все они имеют оксиды железа в качестве основного компонента, а также оксиды других металлов. Люди впервые обнаружили магнетизм с помощью лодстнонов. Лодстоун – магнетит, который находится естественным образом намагниченным. Магнетит притягивается к магнитным полям, но обычно сам не намагничивается. Ферримагнитные материалы похожи на ферромагнетики, но с более низким магнитным притяжением.

Парамагнитные металлы

Парамагнитные металлы слабо притягиваются к магниту и не сохраняют магнитных свойств при удалении от магнита. К ним относятся медь, алюминий и платина. Магнитные свойства парамагнитных металлов зависят от температуры, а алюминий, уран и платина становятся более притягивающимися для магнитных полей, когда они очень холодные. Парамагнитные вещества имеют гораздо меньшие силы притяжения для магнитов, чем ферромагнитные материалы, и для измерения магнитного притяжения необходимы высокочувствительные инструменты.

Как отличить медь от других металлов

У большинства из нас знания о меди и ее свойствах ограничиваются школьным курсом химии, что на бытовом уровне вполне достаточно. Однако иногда возникает необходимость достоверно определить, является ли материал чистым элементом, сплавом или даже композитным материалом. Мнение, что эта информация нужна лишь тем, кто занимается приемом или сдачей металлолома, ошибочно: к примеру, на форумах радиолюбителей и очень часто поднимаются темы, как отличить медь в проводах от омедненного алюминия.

Коротко об элементе №29

Чистая медь (Cu) – золотисто-розовый металл, обладающий высокой пластичностью, тепло- и электропроводностью. Химическую инертность в обычной неагрессивной среде обеспечивает тончайшая оксидная пленка, которая придает металлу интенсивный красноватый оттенок.

Главное отличие меди от других металлов – окраска. На самом деле окрашенных металлов не так много: внешне похожи лишь золото, цезий и осмий, а все элементы, входящие в группу цветных металлов (железо, олово, свинец, алюминий, цинк, магний и никель) обладают серым цветом с различной интенсивностью блеска.

Читать еще:  Как сделать сварочный инвертор своими руками

Абсолютную гарантию химического состава любого материала можно получить лишь с помощью спектрального анализа. Оборудование для его проведения очень дорогое, и даже многие экспертные лаборатории могут о нем лишь мечтать. Однако, существует немало способов, как отличить медь в домашних условиях с высокой долей вероятности.

1. Определение по цвету

Итак, перед нами кусок неизвестного материала, который необходимо идентифицировать как медь. Упор на термин «материал», а не «металл», сделан специально, так как в последнее время появилось немало композитов, которые по внешним признакам и тактильным ощущениям очень похожи на металлы.

В первую очередь рассматриваем цвет. Это желательно делать при дневном свете или «теплом» светодиодном освещении (под «холодными» светодиодами красноватый оттенок меняется на желто-зеленый). Идеально, если для сравнения есть медная пластинка или проволока – в этом случае ошибка в цветовосприятии практически исключена.

Важно: старые медные изделия могут быть покрыты окислившимся слоем (зеленовато-голубым рыхлым налетом): в этом случае цвет металла нужно смотреть на срезе или спиле.

2. Определение магнитом

Совпадение по цвету – достоверный, но не достаточный способ идентификации. Вторым шагом самостоятельных экспериментов будет проба с магнитом. Химически чистая медь относится к диамагнетикам – т.е. к веществам, не реагирующим на магнитное воздействие. Если исследуемый материал притягивается к магниту, то это – сплав, в котором содержание основного вещества не более 50%. Однако, даже если образец не среагировал на магнит, радоваться рано, поскольку нередко под медным покрытием спрятана алюминиевая основа, которая тоже не магнитится (исключить подобное можно с помощью надпиливания или среза).

3. Определение по реакции на пламя

Еще один способ распознать медь – раскалить образец на открытом огне (газовая плита, зажигалка или обычная спичка). Медная проволока при накаливании сначала потеряет блеск, а затем окрасится в черно-бурый цвет, покрывшись оксидом. Этим способом можно отсечь и композитные материалы, которые при накаливании начинают дымить с образованием газа с резким запахом.

4. Определение посредством химических экспериментов

Показательной является реакция с концентрированной азотной кислоты: если последнюю капнуть на поверхность медного изделия, произойдет окрашивание в зелено-голубой цвет.

Качественной реакцией на медь является растворение в соляной кислоте с последующим воздействием аммиаком. Если медный образец оставить в растворе HCl до полного или частичного растворения, а потом капнуть туда обычный аптечный нашатырный спирт, раствор окрасится в интенсивно синий цвет.

Важно: работа с химическими реактивами требует соблюдения мер предосторожности. Самостоятельные эксперименты нужно проводить в хорошо проветриваемом помещении с применением средств индивидуальной защиты (резиновые перчатки, фартук, очки).

Как различить медь и сплавы на ее основе?

В промышленности широко распространены медные сплавы. За многие годы исследований удалось получить немало материалов с уникальными свойствами: высокой пластичностью, электропроводностью, химической стойкостью, прочностью (все зависит от легирующих добавок). Самыми распространенными являются бронзы (с добавкой олова, алюминия, кремния, марганца, свинца и бериллия), латуни (с добавлением 10-45% цинка), а также медно-никелевые сплавы (нейзильбер, мельхиор, копель, манганин).

Сложность в плане идентификации представляют лишь бронзы и латуни, поскольку медно-никелевые сплавы значительно отличаются цветом из-за низкого содержания меди.

Медь или латунь?

В латуни может содержаться от 10 до 45% цинка – металла серебристо-серого цвета. Естественно, чем больше цинка, тем бледнее сплав. Однако, высокомедные латуни, в которых количество добавок не превышает 10%, мало отличаются по цвету от медного образца. В этом случае остается лишь доверять своим ощущениям: латунь намного тверже, труднее поддается изгибу (для большей достоверности желательно сравнение с эталонным образцом). Можно попробовать снять стружку: медная будет иметь форму завитка, латунная – прямолинейную, игольчатую. При помещении образцов в раствор соляной кислоты реакции с медью не наблюдается, а на поверхности латуни образуется белый налет хлорида цинка.

Медь или бронза?

Как и латуни, бронзы гораздо прочнее, что объясняется присутствием в сплаве более твердых металлов. Самой достоверной будет проба «на зубок» — на поверхности бронзы вряд ли останется след от надавливания.

Можно также поэкспериментировать с горячим солевым раствором (200 г поваренной соли на 1 литр воды). Медный образец через 10-15 минут приобретет более интенсивный оттенок, чем бронзовый.

Для тех, кто знаком с электротехникой

Очень часто в качестве лома цветных металлов сдаются медные жилы от электрических кабелей, и нередки случаи, когда при производстве электротехнической продукции используется медненый алюминий. Этот материал имеет значительно меньшую плотность, но из-за неправильной геометрической формы определить объем для расчета плотности довольно сложно. В этом случае определить медь можно по электрическому сопротивлению (естественно, при наличии соответствующих приборов – вольтметра, амперметра, реостата). Измеряем сечение и длину жилы, снимаем показания приборов, и – закон Ома вам в помощь. Удельное сопротивление – достаточно точная характеристика, по которой можно с высокой долей достоверности идентифицировать любой металл.

Заключение

Точно определить качество медного лома или содержание основного вещества в сплаве можно только после проведения экспертизы: все вышеприведенные методы являются приблизительными. Если рассматривать ценообразование при покупке металлолома, то дороже всего стоит электротехническая медь, самые дешевые – сплавы латунной группы. Окончательную стоимость сделки можно уточнить у менеджеров компаний, занимающихся скупкой лома цветных металлов.

РедкоЗемельныйМеталл

Баббит – антифрикционный сплав на основе олова или свинца, предназначенный для использования в виде слоя, залитого или напыленного по корпусу вкладыша подшипника.

Добавки меди дополнительно увеличивает твердость оловянных баббитов.

Свинцовокальциевый баббит используют в подшипниках подвижного состава железнодорожного транспорта.

Баббит Б83 идет только в ГОСТ чушках с выбитым клемом Б-83.

Если свинца более 0,35% то закрывается как Б-80.

Баббит Б-50 (Sn 49-78% остальное свинец)

Баббит Б-16 (Sn 15-48%, Sb 15-17%, Cu 1.5-2% остальное свинец)

Баббит БН (Sn 10-15%, Sb -10%, остальное Pb)

Вольфрам (W) — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения, является одним из наиболее тяжёлых, твёрдых и самых тугоплавких металлов, хорошо поддаётся ковке и может быть вытянут в тонкую нить. Встречается в виде проволоки, ленты, экранов от печей и прочих деталей. В очищенном виде вольфрам — серебристо-белый, напоминает по внешнему виду сталь или платину. (не магнитит, имеет желтую искру, может быть радиоактивным)

Вольфрам – хим состав W-99%

Вольфрам ВН (W от 85%, Ni не более 10%)

Вольфрам ВНД (W от 85%, Ni не более 10%, Cu не более 5%)

Вольфрам ВНЖ (W от 85%, Ni не более 10%, Fe не более 3%)

ВК ТК (твердые сплавы) — твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвердых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанные кобальтовой металлической связкой, при различном содержании кобальта или никеля. ВК ТК (проверяется болгаркой) короткая желтая искра, магнитит ВК ТК с наплавками медно-латунные, желтого цвета.

Магниты ЮНДК — сплав железа (53 %), алюминия (10 %), никеля (19 %) и кобальта (от 18 %). Зарубежные аналоги называют альнико (англ. Alnico) — акроним от входящих в состав элементов. Сплав обладает высокой остаточной намагниченностью, применяется для изготовления постоянных магнитов. Альнико получают литьем, из порошков и горячей деформацией слитка. Альнико обладает высокой коррозионной устойчивостью, большим значением Br (сила магнитного поля) и стабильностью при высоких температурах (до 550 °C). Материал имеет крупнозернистую структуру, спрессованный в различные формы (диск, полукруг и т.д.)

Молибден (Mo) добывают из руд, содержащих до 50% непосредственно вещества, около 30% серы, 9 % кремния и незначительном присутствии других элементов. Фактически руду используют, как концентрат, подвергающийся обжигу. Температура этого этапа составляет 570 — 600 0С, он протекает в специальных печах. Результатом становится огарок, содержащий оксид молибдена, загрязненный примесями. Молибден добавляется в состав стали вместе с рядом других элементов. Процентное содержание определяет тип, полученного продукта: легированная (0,1 — 0,3 %) или инструментальная (3 — 10 %) сталь. Именно его впоследствии используют, когда легируют сталь. Это направление остается основным в применении металла. Лишь 30% добытого молибдена находит место в промышленности, как чистый металл или сплав, где он сохраняет свою первенствующую значимость. Его используют при производстве ядерных реакторов, обшивок космических кораблей.

Быстрорежущие стали (Р9, Р18, Р6М5, Р6М3, Р3М3) — легированные стали, предназначенные, главным образом, для изготовления металлорежущего инструмента, работающего при высоких скоростях резания. Легирование быстрорежущих сталей вольфрамом, молибденом, ванадием и кобальтом обеспечивает горячую твердость и красностойкость стали. Цифра после буквы «Р» обозначает среднее содержание в ней вольфрама (в процентах от общей массы). Затем указывается после букв М, Ф и К содержание молибдена, ванадия и кобальта. Инструменты из быстрорежущей стали иностранного производства обычно маркируются аббревиатурой HSS. Материал имеет красную короткую искру, которую легко можно отличить от чермета, проведя болгаркой. В приеме сверл обращать на концы сверел, чаще всего они идут железные (доп засор).

Никель (Ni) — металл серебристого цвета, часто покрыт зеленоватой оксидной плёнкой, которая предотвращает его дальнейшее окисление. Чистый никель — магнитит как чермет, твердый метал, но, тем не менее, очень пластичен, легко поддается ковке, всем видам волочения. Катодный никель имеет неровную шершавую поверхность, используется в гальванике, на болгарку видна короткая красная искра.

Анодный никель, гладкий в отличие от катода, имеет такие же свойства.

Читать еще:  Марки алюминия и их применение

Медь (фосфористая) (Cu) имеет широкое применение в металлургии и машиностроении.

Существуют четыре основных области их применения:

  • в качестве раскислителя при плавке меди и латуни, а также ряда других медных сплавов; при выплавке меди из катодов на заводах обработки цветных металлов лигатуру вводят в расплав из расчета 0,10- 0,15% Р;
  • в качестве легирующего элемента при производстве фосфорсодержащих медных сплавов, из которых важнейшими являются деформируемые оловяннофосфористые бронзы типа БрОФ 6,5-0,15, литейные бронзы с содержанием до 1% Р; деформируемые бронзы, содержащие до 0,4%
  • в качестве основного компонента припоев с содержанием фосфора от 3 до 10%; в качестве припоев используется как непосредственно лигатура типа МФ10, так и специально разработанные сплавы ПМФОЦр и ПМФЦЖ, содержащие 3-4 вес. %Р; основным потребителем припоев является машиностроение, в том числе производство бытовой техники.

Прецизионные сплавы — это те сплавы, которые характеризуются специальными физ. свойствами (электрическими, магнитными, тепловыми, упругими). Их уровень в значительной мере продиктован точностью химического состава, структурой, отсутствием вредных примесей. Чаще всего они изготавливаются на основе никеля, железа, меди, кобальта, ниобия и пр. Прецизионные сплавы имеют очень широкий спектр свойств. Например, может быть необходимо, чтобы в них наблюдалось чрезвычайно малое изменение физ. параметров при изменении тем-ры, магнитного или электрического полей, нагрузок (получаем инвар, элинвар, константан, перминвар). Иногда необходимо наоборот получить значительное изменение физ. параметров при изменении условий (получаем пермаллой, алюмель, хромель, пружинные сплавы, термобиметаллы и пр.).

Медно-никелевый сплав — сплавы на медной основе и содержащие в качестве основного легирующего элемента никель. В результате смешивания меди и никеля полученный сплав обладает повышенной стойкостью против коррозий, а электросопротивление и прочность возрастают. Медно-никелевые сплавы существуют двух типов электротехнические и конструкционные. К конструкционным сплавом относятся нейзильбер и мельхиор. К электротехническим относятся копель и константан

Титан (Ti) – цветной металл, имеющий серебристо-белую окраску, внешне напоминает сталь. Высокие антикоррозийные свойства и способность выдерживать большинство агрессивных сред делают этот металл незаменимым для химической промышленности. Из титана (его сплавов) изготавливают трубопроводы, емкости, запорную арматуру, фильтры, используемые при перегонке и транспортировке кислот и других химически активных веществ. Он востребован при создании приборов, работающих в условиях повышенных температурных показателях. (ярко-белая искра)

Олово (Sn) — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга).

Припои используются в электротехнике, для пайки трубопроводов. Такие сплавы могут содержать до 97% олова, медь и сурьму, увеличивающие твердость и прочность сплава.

Сурьма (Sb) – элемент, который добывается из руд. Сурьмяными рудами называют минеральные образования с содержанием сурьмы в таких количествах, чтобы при извлечении чистого металла, получить максимальный экономический и промышленный эффект. В чистом виде сурьма считается одним из самых хрупких металлов, но при сплаве с другими металлами она увеличивает их твердость и не происходит процесс окисления при обычных условиях. Эти достоинства заслуженно оценили в промышленной сфере, и теперь сурьма добавляется во многие сплавы. Не магнитит и не искрит, имеет крупнозернистую структуру и легко колется.

Висмут (Bi) — серебристо-белый металл, переливающийся различными оттенками. Чистый висмут отливает преимущественно розовым. Металл, в котором доминирует какой-либо другой цвет, является аллотропной модификацией. Висмут самый диамагнитный металл из всех существующих. Его магнитная восприимчивость равна 1,34·10−9 при 293 K. И данное качество, при наличии висмута, можно заметить невооруженным взглядом. Если подвесить образец металла на нитку и поднести к нему магнит, то он заметно от него отклонится. Висмут ценится за свою легкоплавкость, из него изготавливают модели для отливки сложных деталей, поскольку висмут имеет повышенные литейные свойства, и может заполнить мельчайшие детали формы. Им заливают металлографические шлифы, используют в протезировании.

Сплав Розе назван в честь германского химика Валентина Розе Старшего. Состав сплава: олово (25%), свинец (25%), висмут (50%). Сплав Вуда имеет в своем составе (12,5%) Кадмия, что делает его гораздо токсичнее. Представляют собой небольшие гранулы или прутки серебристого цвета. Температура плавления сплава Розе порядка +94..+96 °C (Сплава Вуда +68,5 °C), что позволяет им расплавляться и прибывать в жидком состоянии в кипящей воде, применяют для пайки и улучшения технических качеств деталей в приборах. С помощью этих кусочков металла соединяют алюминий, медь, серебро, латунь, никель и лудят платы и ювелирные изделия.

Цинк добывают из полиметаллических руд, содержащих 1—4 % Zn в виде сульфида, в природе как самородный металл не встречается, используется для восстановления благородных металлов. Цинк всех марок, кроме марки ЦВ00, изготовляют в виде чушек массой 19 — 25 кг и блоков массой 500, 1000 кг. Цветная маркировка чушки и блока (ЦО — одна полоса белого цвета, Ц1 — одна полоса зеленого цвета)

Феррованадий — ферросплав, содержит от 35 до 80 % V. Его получают восстановлением окислов ванадия углеродом, кремнием или алюминием. Основным сырьем для получения феррованадия служит пяти-окись ванадия, получаемая из концентратов ванадиевых руд или из железных руд с повышенным содержанием ванадия. Затем этот чугун перерабатывают в сталеплавильных печах ( мартен, конвертор) с окислением ванадия и обогащением получаемого при этом шлака окислами ванадия.

Ферромолибден — ферросплав, содержащий 50-60 % молибдена, используют вместо чистого молибдена при легировании стали, чугуна и сплавов. Добавка молибдена в чугун увеличивает его прочность и сопротивление износу.

Нихром — общее название группы сплавов, состоящих, в зависимости от марки сплава, из 55—78 % никеля, 15—23 % хрома, с добавками марганца, кремния, железа, алюминия. Нихром обладает высокой жаростойкостью в окислительной атмосфере (до 1250 °C), высоким удельным электрическим сопротивлением (1,05—1,4 Ом·мм?/м), имеет минимальный температурный коэффициент электрического сопротивления. Он имеет повышенную жаропрочность, крипоустойчивость, пластичность, хорошо держит форму.

Нихром — дорогостоящий сплав, но, учитывая его долговечность и надёжность, цена не представляется чрезмерной.

Наше преимущество

У нас высокие ценники на отходы цветных металлов и выгодные условия сотрудничества:

Магнитится ли золото и что это значит?

Изделия из золота с давних пор являются символом богатства и успеха, указывают на статусность своего владельца. Цена золота довольно высока, поэтому изделия из него могут подделывать. Многие изделия золотистого цвета по внешнему виду схожи с золотом, но не являются таковыми. Существует мнение, что золото не магнитится, поэтому стоит выяснить, какими магнитными свойствами обладает драгоценный металл и как он реагирует на магнит.

Магнитные свойства

Золото является особым металлом, обладающим уникальными свойствами. Оно имеет высокую устойчивость к воздействию кислоты и окислительным процессам. Изделия из золота обладают высоким показателем плотности, и в то же время они достаточно пластичны. К основным свойствам золота можно отнести его мягкость, ковкость и инертность. Если к золотому слитку с пробой 999 поднести магнит, то он не будет магнититься, так как такой металл имеет противомагнитные свойства.

В ювелирных изделиях не применяют золото в чистом виде, поскольку металл хрупок и не будет подходить для частого ношения.

Для создания украшений используют специальные сплавы, где, кроме этого металла, используются иные, именуемые лигатурой. Благодаря этому сплав имеет высокую износостойкость.

Если поднести к изделиям из золота, серебра или висмута магнит, то он не только не притянется, а наоборот, будет отталкиваться. Это говорит о том, что изделия, выполненные из высокопробных металлов, не магнитятся.

Если сплав имеет пробу 585, то он считается высокопробным. В данном случае 58,5% будет приходиться на золото, а оставшиеся 41,5% распределяются между медью и серебром. Сочетаясь между собой, они не попадают под воздействие магнита, так как ни золото, ни серебро не магнитятся, медь же, в свою очередь, прилипает незначительно.

Проба, выгравированная на ювелирном изделии, укажет на состав.

Для таких ювелирных изделий выбирают сплав, состоящий от 37,5% до 75% из благородного металла. Процент серебра может варьироваться от 5 до 15, также присутствует палладий – от 3 до 20%. Остальная часть достается меди.

Иногда можно найти отзывы, что магнитится только застежка в цепочке. Это связано с тем, что для изготовления застежек-пружинок используют углеродистую сталь. В том случае, если само изделие не магнитится, его можно покупать.

Почему золото может реагировать на магнит?

Перед покупкой ювелирного украшения из золота многие покупатели нередко берут с собой в магазин магнит, пытаясь выяснить, является ли изделие подлинным. Использование магнита помогает в ряде случаев выявить поделочный экземпляр.

Некоторые недобросовестные производители выпускают фальшивые украшения. Даже если на золотом изделии есть проба, это не всегда значит, что оно подлинное, так как есть вероятность подделки. Поставить пробу на изделии несложно, и она не может являться показателем подлинности товара.

Если к цепочке, сережкам или браслету, изготовленному из золота, поднести магнит, то он их не берет.

Если в составе есть кобальт, железо или сталь, то подобное изделие примагнитится, и его можно считать подделкой.

Читать еще:  Высокоточное литье стали

По мнению опытных экспертов, существует несколько причин, по которым изделия начинают прилипать к магниту, и цепочка или кольцо способно примагнитить к себе.

  • При использовании золотого сплава с кадмием или никелем. Чаще всего их применяют при изготовлении штампованных толстых цепочек.
  • Использование позолоченной бижутерии. Сейчас существуют эффективные методы нанесения на изделие защитного покрытия, при котором на нем образуется пленка, она прочно скрепляется с основой.

Существуют металлы, которые внешне схожи с золотом, но не обладают особыми свойствами.

  • Сплавы из алюминиевой бронзы, которые на 90% состоят из меди и на 10% из алюминия.
  • Варианты из бартбронзы, состоящие на 50% из олова и бронзы.
  • Сплавы из голдина, где сочетаются медь и алюминий. Голдин используется ювелирами многих европейских стран при изготовлении бижутерии.
  • Сплав из платинора, в основе которого медь. Кроме того, здесь присутствует платина, серебро, никель и цинк.

Медь обладает слабыми магнитными свойствами и по внешнему виду схожа с золотом. Довольно часто недобросовестные производители изготавливают поддельные украшения из меди.

Чтобы придать таким изделиям схожести с золотыми украшениями, их покрывают позолотой.

Все указанные сплавы прекрасно имитируют золото. Для выявления подлинности таких изделий магнит не поможет, так как эти цветные металлы к нему не всегда притягиваются. Проверка цепочек, колец и сережек из золота в домашних условиях не может дать стопроцентного результата в установлении подлинности.

Цвет изделий и проверка их на магните не являются достоверным показателем качества товара.

В чистом виде золото не намагничивается, поэтому при реакции украшения на магнит его обязательно проверяют на подлинность. В том случае, если изделие тянется к магниту – приобретать его не стоит. Или же рекомендуется проверить его на подлинность у специалиста-ювелира.

Существует несколько способов проверки изделий из драгоценных металлов на их подлинность. Это и исследования их лабораторным путем, и использование различных реактивов. Используя реактивы и специальное оборудование, специалисты проведут проверку изделий и дадут оценку их подлинности.

Приобретать ювелирные украшения рекомендуется только в солидных ювелирных магазинах, которые дорожат своей репутацией. Также стоит убедиться в наличии сертификата на подобную продукцию.

Данные меры предосторожности позволят приобрести именно натуральное ювелирное украшение, а не дешевую подделку.

Исходя из всего вышесказанного, можно сделать вывод, что проверять подлинность изделия из драгоценных металлов с помощью магнита нецелесообразно, так как это не обеспечит 100% гарантию их подлинности.

МАГНИТНЫЕ СВОЙСТВА

Известна железная руда — магнитный железняк. Ку­ски магнитного железняка обладают замечательным свойством притягивать к себе железные и стальные пред­меты. Это — естественные магниты. Лёгкая стрелка, сде­ланная из магнитного железняка, всегда поворачивается одним и тем же концом к северному полюсу Земли. Этот конец магнита условились считать северным полюсом, а противоположный ему — южным.

Если железный или стальной стержень привести в со­прикосновение с магнитом, стержень сам становится маг­нитом, сам будет притягивать железные опилки, стальные гвозди. Говорят, что стержень намагничивается.

Намагничиваться способны все металлы, но в разной степени. Очень сильно намагничиваются только четыре чистых металла — железо, кобальт, никель и редкий ме­талл гадолиний. Хорошо намагничиваются также сталь, чугун и некоторые сплавы, не содержащие в своём со­ставе железа, например сплав никеля и кобальта. Все эти металлы и сплавы называют ферромагнитными (от латинского слова «феррум» — железо).

Совсем слабо притягиваются к магниту алюминий, платина, хром, титан, ванадий, марганец. Намагничи­ваются они так незначительно, что без специальных при­боров обнаружить их магнитные свойства нельзя. Эти металлы получили название парамагнитных (гре­ческое слово «пара» означает около, возле).

Висмут, олово, свинец, медь, серебро, золото намагни­чиваются тоже очень слабо, но они не притягиваются маг­нитом, а наоборот, очень слабо отталкиваются от него и называются поэтому диамагнитными («диа» по — гречески значит поперёк).

Почему же одни металлы намагничиваются сильно, а другие — слабо?

Рис. 13. Вокруг провода, по ко­торому течёт ток, всегда есть магнитное поле.

Поднесём к медной проволоке, по которой течёт ток от батареи, несколько магнитных стрелок. Стрелки рас­положатся так, как показано на рисунке 13. Это значит, что на стрелки действуют магнитные силы; другими словами — вблизи проводни­ка с током возникает магнит­ное поле. Возникновение маг­нитного поля есть результат движения электрических за­рядов — электронов.

Теперь вспомним об ато­ме. Вокруг центральной ча­сти атома — ядра — дви­жутся электроны. Каждый электрон, кроме того, вра­щается и вокруг собственной оси. Каждый электрон также создаёт на своём пути маг­нитное поле.

В атомах висмута, олова и других диамагнитных ме­таллов магнитые поля отдельных электронов направлены навстречу друг другу, и действие одного поля уничто­жается действием другого. Таким образом, атомы диа­магнитного металла не имеют магнитных свойств. Но диамагнитные тела слабо отталкиваются от магнита. Почему же это происходит?

Если какое-нибудь вещество внести в поле магнита, то атомы этого вещества будут равномерно вращаться в маг­нитном поле; вращение приводит к тому, что атомы по­лучают магнитные свойства, становятся как бы малень­кими, очень слабыми магнитиками. Учёные точно рассчи­тали, что северный полюс каждого атома-магнитика ока­зывается при этом против северного полюса магнита (рис. 14). А так как одноимённые магнитные полюса от­
талкиваются, атом должен отталкиваться магнитом. Именно такой и только такой магнетизм обнаруживается у диамагнитных металлов.

Иное дело — парамагнитные и ферромаг­нитные металлы. Атомы этих металлов построены так, что отдельные магнитные поля электронов усиливают

Друг друга и каждый атом уже является ма­леньким магнитиком с двумя полюсами. В чём же разница между этими двумя группами металлов?

В парамагнитных металлах атомы-магнитики распо­ложены совершенно беспорядочно (рис. 14). В магнитном поле атомы тоже начинают вращаться (это общее для всех атомов свойство), и вращение приводит к тому же, что и у диамагнитных металлов. Но диамагнетизм здесь обнаружить не удаётся, так как у парамагнитных атомов есть гораздо более сильные «собственные» магнитные по­люса (результаты наложения друг на друга магнитных полей отдельных электронов) и эти полюса будут вести себя обычным образом: северный полюс будет стремиться к южному полюсу магнита, а южный — к северному. Если
бы атомы не совершали теплового движения, они бы­стро установились бы в полном порядке (северными по­люсами к южному полюсу магнита) и парамагнитный металл можно было бы намагнитить так же сильно, как и ферромагнитный. Но при обычных температурах этого не происходит: тепловое движение всё время расшаты­вает строй атомов, и металл намагничивается очень слабо.

Рис. 15. Границы намагничен­ных областей в чистом железе.

Иная картина наблюдается в ферромагнитных металлах.

Учёные предполагают, что ме­жду атомами ферромагнитных тел действуют особые мощные электрические силы. Благодаря наличию этих сил атомы — магнитики в опреде­лённых участках кри­сталла выстраиваются в строгом порядке и сохраняют свое расположение (рис. 14). Поэтому в кристаллах железа, кобальта, ни­келя и гадолиния есть отдельные скопления атомов, сотни миллиардов атомов, магнитные полюса которых располо­жены одинаково. Такие самопроизвольно намагниченные скопления называются доменами. Границы их можно видеть в микроскоп, если на поверхность ненамагничен — ного металла навести очень тонкую железную пыль. Пы­линки собираются у границ доменов, у полюсов (рис. 15).

Когда железо или другой ферромагнитный металл вносится в магнитное поле, полюса отдельных скоплений постепенно смещаются, пока северные полюса доменов не станут против южного полюса магнита.

Большая заслуга в развитии наших знаний о ферро­магнитных явлениях принадлежит советским учёным Н. С. Акулову, Е. И. Кондорскому и другим.

Мы уже отмечали, что тепловое движение мешает атомам-магнитикам выстраиваться в магнитном поле даже при обычных температурах. При нагревании эти «помехи» усиливаются, и чем выше температура, тем труднее намагнитить металл. Для каждого ферромаг­нитного металла существует определённая температура, при которой он уже становится парамагнитным. Эти температуры в честь открывшего их физика Пьера Кюри названы точками Кюри. Для кобальта точка

Кюри — около 1000°, для железа — примерно 750°, а для никеля — 360°.

Рис. 16. Схема электромагнита.

Ферромагнитный металл намагничивается в магнитном поле. Это не значит, что для получения магнита обяза­тельно нужен естественный магнит. Получить магнит можно и с помощью электрического тока. Если железный стержень обмотать изолированной проволокой, а затем пропускать по ней ток, стержень (сердеч­ник) намагнитится (рис. 16). Полученный таким путём магнит называют электро­магнитом. Как только ток в прово­локе прекращается, электромагнит теряет свою силу — железо почти полностью размагничивается. Это свойство электро­магнита весьма денно в тех случаях, ко­гда действие магнитной силы необходимо лишь на определённое время.

Электромагниты применяются очень широко. Электромагнит — необходимая деталь телеграфного аппарата, телефона, электрического звонка, динамомашины, электромотора, электромагнитного подъ­ёмного крана.

Если сердечник электромагнита сде­лать не из железа, а из стали, то после выключения тока магнитные свойства не исчезнут, сталь не размагнитится: строе­ние этого сплава неоднородно, и поэтому восстановление прежнего беспорядка в расположении полюсов отдельных доменов затруднено. Железо легче намагнитить, чем сталь, легче его и размагнитить. Поэтому сердечники электро­магнитов делаются именно из железа, а на изготовление постоянных магнитов идёт сталь.

Постоянные магниты необходимы для изготовления компасов, радиорепродукторов, различных измеритель­ных электроприборов и т. д. Они делаются обычно из высокоуглеродистой стали. Теперь начинают приме­няться постоянные магниты из нового сильно намагничи­вающегося сплава м а г н и к о, который состоит из ко­бальта, никеля, меди, алюминия и железа. Магнико со­здан советскими металловедами А. С. Займовским и Б. Г. Лившицем.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]