Вредность аргоновой сварки

Сварка и сопутствующие ей факторы, опасные для здоровья человека

Сварка и сопутствующие ей факторы, опасные для здоровья человека

В настоящее время наибольшее распространение получили следующие виды сварки.

1. Газовая сварка — процесс соединения металлических деталей за счет локального нагрева места соединения пламенем газовой горелки. Высокая температура пламени достигается применением смеси горючего газа (пропан, ацетилен) с кислородом. Возможен и обратный процесс газовая резка. Тот или иной режим достигается увеличением расхода газовой смеси и соотношения газов в ней.

2. Дуговая электросварка — электросварка распространена не менее широко, чем газовая. При электросварке используется тепловое действие электрической дуги, возникающей между свариваемыми металлическими деталями и электродом. Различают следующие основные виды электросварки.

2.1. Дуговая электросварка металлическим электродом.

При этом виде сварки электрод плавится и расходуется постоянно, образуя сварочный шов. Дуговая сварка металлическим электродом — наиболее распространенный вид сварки, применяемый при ремонтных, строительных и других работах.

2.2. Дуговая электросварка вольфрамовым электродом в среде инертного газа.

При этом виде сварки вольфрамовый электрод служит только для образования и поддержания дуги, сам не плавится и не расходуется, так как вольфрам-тугоплавкий металл. Сварка вольфрамовым электродом применяется для соединения между собой деталей из алюминия и специальных сортов стали.

2.3. Дуговая электросварка металлическим электродом в защитных средах.

При этом виде сварки металлический электрод плавится и расходуется. Защитная среда может быть как инертной (аргон) или активной (углекислый газ). Качество сварочного шва при этом способе выше, чем при сварке металлическим электродом в воздухе, поэтому дуговая сварка металлическим электродом в защитных средах широко применяется в ответственных случаях.

Любой сварочный процесс всегда сопровождается рядом факторов, представляющих опасность для здоровья как сварщика, так и людей, находящихся вблизи во время сварки. Особенно опасна по воздействию на человека электрическая дуга, так как интенсивность её излучения очень высока. При любом виде сварки в той или иной мере присутствуют следующие вредные факторы:

  • ультрафиолетовое излучение;
  • слепящая яркость видимого света;
  • инфракрасное излучение:
  • искры и брызги расплавленного металла;
  • дым;
  • вредные вещества, выделяющиеся в процессе сварки в виде аэрозолей и газов (зависят от вида сварки, вида электрода, вида выполняемых работ и свариваемых материалов).

УФ-излучение не воспринимается глазом человека и поэтому опасно вдвойне. УФ-излучение прежде всего действует на глаза, вызывая повреждение роговицы, хрусталика и сетчатки. При незначительном содержании ультрафиолета (при естественном солнечном освещении, например) он поглощается хрусталиком и внутриглазной жидкостью и практически не достигает сетчатки. При сварке интенсивность УФ-излучения значительно превышает естественный уровень и поэтому часть его достигает сетчатки глаза, вызывая фотохимические повреждения. Сетчатка имеет ограниченную способность к восстановлению и поэтому длительное её облучение приводит к необратимым последствиям и потере зрения. УФ-излучение приводит также к ожогам роговицы глаза и раздражению кожи.

Слепящая яркость видимого света при высокой интенсивности облучения также вредно воздействует на глаза. Особенно опасна синяя часть спектра излучения дуги или газового факела, которая в сочетании с воздействием инфракрасного излучения вызывает фотохимические повреждения сетчатки глаза.

Инфракрасное излучение также, как и ультрафиолетовое, не воспринимается глазом человека. Инфракрасное излучение, особенно длинноволновое поглощается тканями организма человека, вызывая их нагрев, который может привести к ожогам. Сочетание вредного воздействия с излучением в синей части спектра было отмечено выше; в дополнение к этому ИК-излучение снижает пороговые значения воздействия УФ-излучения и тем самым увеличивает вероятность повреждения глаза.

Искры и брызги расплавленного металла представляют опасность как для глаз, так и для кожи, вызывая ожоги, часто очень тяжелые, особенно при попадании в глаза.

Дым и вредные вещества, выделяемые в процессе сварки представляют опасность для органов дыхания, так как при длительном их вдыхании возможны различные заболевания органов дыхания, в том числе профессиональные, или отравления.

Существует единственный способ избежания или резкого снижения воздействия вредных факторов, сопутствующих процессу сварки — правильный выбор и применение средств защиты головы (каски, щитки), глаз (очки защитные), лица (шитки сварщика) и органов дыхания.

Сварочный аппарат ECONECT для дуговой сварки выводов ЭХЗ

Дым во время сварки

Дым во врем сварки будь то ручная дуговая MMA, TIG, MIG/MAG, газовая несет в себе опасность на здоровье человека. Вместе с ним поднимаются различные тяжелые металлы и химические соединения, практически треть таблицы Менделеева. Каждое вещество может по разному влиять на организм человека. О самых опасных пойдет речь.

Марганец Mn используют как раскислитель металла в металлургии. Делает металл более жидким и податливым. Во время термической реакции с другими металлами поднимается в виде мелких частиц. Передозировка в 40мг приводит к потери аппетита, сонливость, ухудшение памяти, повышенная утомляемость. Является политропным ядом. Длительное воздействие приводит к нарушению дыхания, сердечно-сосудистой системы, функционированию мозга, центральной нервной системы.

Цинк Zn используют как легирующий коррозиестойкий материал в латуне может быть до 50% содержания. Придает особые свойства металлу. При сгорании образуется белый дым и порошок оксид. Покрывают им трубы, листы и тому подобное. Суточная доза не должна превышать 11мг. Передозировка приводит к ухудшению здоровья. Симптомы сопутствующие такие как: появление во рту сладкого привкуса, тошнота, рвота, сильная жажда, озноб, повышенная сонливость, сухой кашель, давящая боль в области груди, резкое повышение температуры тела. Длительное воздействие приводит к онкологии внутренних органов. Может развиться почечная недостаточность, нарушение функции кровообращения, сердца, судороги икроножных мышц.

Медь Cu металл используется как в чистом виде так и в сплавах бронзы, латуни, и в других металлах. Обладает высокой теплопроводностью и электро-проводимостью. Широко применяется в промышленных отраслях, в быту. Избыток при вдыхании паров и частиц меди приводит к функциональному расстройству нервной системы, медная лихорадка, слезотечение, раздражение слизистых оболочек дыхательных путей, головной боли, слабость, мышечная боль, проливной пот. Длительное воздействие влечет за собой нарушение функций почек, цирроз печени, аллергодерматоз, анемия. Особенно при сварке меди и её сплавов наблюдаются такие симптомы.

Бор В применяют в металлургии для легирования сталей и цветных металлов. В процессе сварки испаряется, образуя различные химические соединения. Признаки отравления раздражение глаз и носоглотки, судороги, психическое нарушение, двоится в глазах, рвота, тошнота.

Никель NI при испарении попадая в дыхательные пути может снизить моторику легких, хронический бронхит, рак легких.

Кремний Si накопление в легких при вдыхании паров приводит к болезни силикоз, связанная с затруднением дыхания.

Калий К применяется в обмазке электрода с кремнием. Силикат калия или жидкое стекло. При попадании в виде мелких частиц в легкие может вызвать серьезные осложнения. Наблюдается общая мышечная слабость, чаще тянет в туалет по маленькому, потливость обильная, усиливается риск диабета.

Азот N газ который применяют при сварке при вдыхании в чистом виде воздействует на центральную нервную систему. Побочные действия его проявления такие как необоснованное волнение страх, беспокойство, судороги и спазмы икроножных мышц, нарушение дыхания, боль в груди, тахикардия, гипертермия, нарушение сознания.

Читать еще:  Хонинговальная головка своими руками

Углекислый газ СО2 используют как защитный газ во время сварки. В плохом вентилируемом помещении увеличивается его допустима концентрация. Это сказывается на состоянии человека. Так как он еще увлекает в след за собой еще и азот. Проявляется отравление в виде нарушение координации движения, головную боль, зрительное раздражение на яркий свет, замедленная моторика, умственная усталость.

Аргон газ Ar применяют в TIG сварке MIG/MAG, обладает инертными свойствами не взаимодействует с металлами. Тяжелее воздуха. Однократное вдыхание чистого аргона вызывает эйфорию. Сопровождается это вытеснением из организма человека кислорода и замещает его. При последующем длительном воздействии наступает тяжесть в лобной части головы, ощущение жары по всему телу, покалывание в конечностях.

Хром Cr применяют в металлургии для легирования сталей различных сплавов, гальваника, прочее. При попадании в большом количестве в виде частиц и химических соединений дает о себе знать. Кожные высыпание дерматит, экземы, развитие язвы желудка, бронхиальной астмы, развитие болезней почек печени. Особенно при сварке нержавеющих жаропрочных сталей.

Железо Fe избыток его может привести к повреждению головного мозга, почек, печени. Признаки отравления: желтоватый оттенок кожи, нарушение ритма сердца, тошнота, потеря аппетита, боли в желудке.

Кроме газов все элементы взаимодействуют между собой, усиливают процесс всасывания в организм в результате чего получаем критическую дозу отравления. Пожалуйста пользуйтесь респираторами которые нейтрализуют примеси находящиеся в дыме во время сварки. Порой не сразу проявляется а только спустя некоторое время. Допустим всю неделю проработали ни чего плохого не случилось а на выходные дома уже при отдыхе чувствуется усталость. При этом физическим трудом не занимаетесь. Вот пожалуйста действие этих элементов на организм.

В 1929 году электрической дугой начали сваривать днищевые балки танкеров, а позже — судовые трубопроводы. Дуге было оказано достаточно высокое доверие. Однако у конструкторов, производственников и эксплуатационников оставались сомнения в…

Есть несколько применяемых методов сварки титана, из которых можно выделить ручную дуговую сварку,с применение инертных газов, метод сварки под флюсом, электрошлаковый способ, а также электронно-лучевую сварку. Метод ручной дуговой сварки…

Флюс соединения с органическими и не органическими веществами. Применяются для травления поверхности металла для удаления оксидной пленки, защита от окисления во время нагревания, способствует лучшему взаимодействию разнородных металлов между собой…

«Прогнил кузов» — такую фразу Вам, скорее всего, приходилось слышать не один раз. Такую фразу употребляют многие автолюбители, потому что ремонт кузова для стареньких авто – обычное дело. Первым делом…

На сегодняшний день большинство компаний предлагает множество различных электродов для сварки труб. Компании стараются как можно чаще разрабатывать новые варианты марок, чтоб облегчить работу сварщиков. Но в результате возникает вопрос,…

Риски для здоровья при сварке MIG

Сварка в инертном газе (MIG), по сравнению с процессом MAG, хотя и снижает выбросы загрязняющих веществ, однако является причиной выделений опасных веществ с высоким риском для здоровья. И, прежде всего, взаимодействие человека с газом делает неизбежным обеспечение эффективной безопасности на производстве.

Сварка MIG считается очень продуктивным и быстрым видом сварки и используется, главным образом, при обработке цветных металлов — например, при производстве различных установок, аппаратов или самолетов. В отличие от сварки MAG, в MIG-сварке используются не активные газы, а инертные. В первую очередь аргон, а в некоторых случаях и более дорогой гелий, помогают защитить сварной шов от окисления внешним воздействием кислорода из воздуха.

Но в этом как раз и скрывается опасность для здоровья сварщиков. Сварка MIG — это вид дуговой сварки. Для обеспечения высокой производительности дуга имеет решающее значение. Она обеспечивает высокие температуры и оплавляет сварочную проволоку, намотанную на катушку. Проволока, в свою очередь, служит токоведущим электродом, но также и дополнительным материалом. И 95 % опасных веществ во время сварки обычно возникают из присадочных материалов.

Хотя MIG-сварка, по сравнению со сваркой MAG, вызывает меньшее количество сварочных дымов, ее опасность проявляется в деталях. При сварке алюминиевых материалов выделяются прежде всего фракции оксида алюминия. Он является очень опасным и может привести к оседанию пыли в дыхательных путях, особенно в легких. Сварщик может заболеть необратимым алюминозом — патологическими изменениями в легких, которые развиваются при вдыхании пыли алюминия.

Интенсивность воздействия имеет решающее значение. Подобным образом может возникнуть раздражение дыхательных путей.

При MIG-сварке алюминиевых сплавов должны учитываться также риски от озона. Происхождение газа, в основном, связано со сварочной дугой в сочетании с небольшим количеством сварочных дымов. Поскольку при сварке выделяется меньше сварочных дымов, возникает меньше препятствий для распространения ультрафиолетовых лучей. При этом они отражаются от блестящих поверхностей материалов из алюминия и нержавеющей стали. Так в рабочей зоне возникает озон. Большее количество возникающей пыли и дымов способствовало бы быстрому распаду этого неустойчивого газа на кислород. Вдыхание озона вызывает раздражение слизистой оболочки, интоксикацию раздражающим газом или отек легких. Кстати, при MIG-сварке производится в десять раз больше озона, чем при сварке TIG.

Никелевые сплавы в качестве присадочного материала очень опасны при сварке MIG!

При MIG-сварке никеля или сплавов на основе никеля наибольшая вероятность возникновения опасности возникает из-за присадочных материалов. Если они в большей мере состоят из никеля, сварочный дым содержит оксид никеля в количестве до 87 %. Оксид никеля является канцерогеном.

Кроме того, если сплавы на основе никеля содержат медь, можно предположить, что возникает большее количество сварочных дымов. При этом, оксид меди, который классифицируется как токсичный и может вызвать металлическую лихорадку, является основным компонентом.

Для снижения негативных последствий для здоровья человека необходимо обеспечить рабочее место сварщика необходимым фильтровентиляционным оборудованием и средствами защиты при сварке. В частности, сварщикам должен быть обеспечен немедленный захват вредного дыма с места его возникновения. Большую помощь отечественным производствам в этом вопросе оказывает мобильный фильтровентиляционный агрегат STRONGMASTER немецкой компании TEKA. Он используется для продолжительной очистки воздуха от дыма и пыли, образующихся при сварке нелегированных сталей, благородных металлов, оцинкованного материала и алюминия, даже при их высоких концентрациях.

Передвижной картриджный агрегат испытан со всеми вытяжными устройствами ТЕКА и заверен IFA на фильтрацию дыма класса W3 (Свидетельство об испытаниях IFA 201021078/1140). Эффективность очистки составляет ≥ 99 %.

Установка оснащена регенерируемым фильтр-картриджем, что делает его особо экономичным в отношении прямых и косвенных затрат на его содержание. Так, для примера, одноразовый фильтр при сварке MIG наполнится уже к концу первого дня использования. Фильтр-картридж компании TEKA, в зависимости от интенсивности использования, служит от двух до трех лет – а это прямая экономия на расходных материалах. При очистке фильтр-картридж не вынимается из корпуса, что предохраняет от возврата уловленной пыли обратно в рабочее помещение. Конструкция установки разработана в соответствии с требованиями пожарной безопасности, предъявляемых агрегатам осуществляющим фильтрацию сварочного дыма класса „W3“ (высоколегированные стали). При правильном применении установка может эксплуатироваться в помещении по рециркуляционной схеме, так как им выполняются все требования к исключительным ситуациям согласно новому европейскому закону о вредных веществах (GefstoffV).

Прочная стальная конструкция со сплошным порошковым покрытием обеспечивает бесперебойный режим работы, даже в самых тяжелых условиях.

Отражательная пластина служит пресепаратором грубых частиц. Затем воздух проводится через фильтр-картридж, здесь на его поверхности задерживаются остаточные частицы пыли и дыма. Фильтр очищается изнутри, со стороны чистого воздуха, и через дверку техотсека, с помощью ручного пневматического пульверизатора. Пыль собирается в пылесборнике, откуда затем удаляется.

Читать еще:  Как сделать вал для циркулярки своими руками

Очищенный воздух возвращается обратно в рабочее помещение через выходную решётку не в сторону, а вверх. Таким образом, уже на расстоянии 1 метра от установки не ощущается сквозных потоков воздуха. Агрегат оснащён особо мощным вентилятором, создающим высокое разряжение, что даёт высокую производительность даже при насыщенности фильтров.

В зависимости от требований заказчика и производства, возможно укомплектовать фильтровентиляционный агрегат вытяжным рукавом 2, 3 или 4 метра (гибким или жестким), либо вытяжным шлангом длиной до 12 метров с вытяжным колпаком на магнитной ножке для удобного позиционирования. Кроме того, можно доукомплектовать установку комплектом подсветки – для лучшего освещения зоны сварки, кнопкой включения через колпак – в этом случае сварщик 100% будет включать агрегат только для сварки, ведь ему не нужно будет никуда для этого ходить, что значительно сэкономит электроэнергию.

Компания «ДельтаСвар» является официальным дистрибьютором ТЕКА в России. Наши специалисты проконсультируют Вас по всем вопросам относительно фильтро-вентиляционного оборудования, организации рабочего места сварщика и средств индивидуальной защиты.

Читайте также:

Плазменная резка алюминия: мифы и реальность
Процесс плазменной резки разработан давно, но он постоянно совершенствуется. В любой дискуссии о том, как резать металл, разговор сразу заходит о лазерной и гидроабразивной резке. Однако, с резкой алюминия всё не так очевидно. .

С Международным женским днем 8 марта!
Дорогие женщины!От всей души поздравляем вас с Международным женским днем 8 марта! .

Приглашаем посетить стенд «ДельтаСвар» на выставке «MashExpo Siberia»
Сентябрь 2020, Новосибирск, ул. Станционная, 104, МВК «Новосибирск Экспоцентр» Международная выставка металлообработки и сварки «MashExpo Siberia» .

Приглашаем посетить стенд «ДельтаСвар» на выставке «Металлообработка. Сварка — Урал 2020»
17-20 марта 2020, Екатеринбург, МВЦ «Екатеринбург ЭКСПО» 20-я Специализированная выставка технологий и оборудования для машиностроения, металлообрабатывающей промышленности и сварочного производства «Металлообработка. Сварка — Урал 2020» .

Приглашаем посетить стенд «ДельтаСвар» на выставке «МИР КЛИМАТА—2020»
10-13 марта 2020, Москва, «Экспоцентр»,16-я международная специализированная выставка «МИР КЛИМАТА—2020».«МИР КЛИМАТА» — крупнейшее выставочное мероприятие России и Восточной Европы в области HVAC&R, которое объединяет лидеров индустрии для делового общения и демонстрации передовых разработок в области производства и внедрения систем кондиционирования, вентиляции, отопления, промышленного и коммерческого холода. .

Форум для экологов

Форум для экологов

Аргонно-дуговая сварка

Аргонно-дуговая сварка

Сообщение Irishka_ecolog » 16 мар 2009, 23:51

Re: Аргонно-дуговая сварка

Сообщение Андрей_К » 16 мар 2009, 23:51

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 022, Объект N 0031,
Источник загрязнения N 0002,
Источник выделения N 002, ______________________________________________________________________
Список литературы:
1. Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выделений) СПб, НИИ Атмосфера, 2000
2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), CПб, НИИ Атмосфера, 2005
______________________________________________________________________

Работы проводятся на открытом воздухе
Максимальная продолжительность работы в течении 20 минут, в минутах , Tn = 10

РАСЧЕТ выбросов ЗВ от сварки металлов
Вид сварки: Пулуавтоматическая наплавка плавящимся электродом в среде аргона
Электрод (сварочный материал): Оловянистая бронза
Общий расход сварочных материалов , кг/год , Bo = 20
Расход сварочных материалов за вычетом огарков электродов, кг/год , B = 0.85 * Bo = 0.85 * 20 = 17
Время работы сварочного оборудования, час/cутки , _S_ = 1
Число дней работы участка в году , Dr = 100
Время работы сварочного оборудования, час/год , _T_ = Dr * _S_ = 100 * 1 = 100
Максимальный общий расход сварочных материалов за день, кг , Bmaxo = 0.5
Расход сварочных материалов за вычетом огарков электродов, кг/день , Bmax = 0.85 * Bmaxo = 0.85 * 0.5 = 0.425

Удельное выделение сварочного аэрозоля,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 7
в том числе:

Примесь: 0123 диЖелезо триоксид (Железа оксид) /в пересчете на железо/

Удельное выделение загрязняющих веществ,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 2.93
С учетом поправочных коэффициентов , Gis = Knost * Gis = 0.4 * 2.93 = 1.172
Валовый выброс ЗВ, т/год
_M_ = Gis * B / 10 ^ 6 = 1.172 * 17 / 10 ^ 6 = 0.00001992
Максимальный разовый выброс ЗВ, г/с
_G_ = Gis * Bmax / 3600 / _S_ * Tn / 20 = 1.172 * 0.425 / 3600 / 1 * 10 / 20 = 0.0000692

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/

Удельное выделение загрязняющих веществ,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 0.14
С учетом поправочных коэффициентов , Gis = Knost * Gis = 0.4 * 0.14 = 0.056
Валовый выброс ЗВ, т/год
_M_ = Gis * B / 10 ^ 6 = 0.056 * 17 / 10 ^ 6 = 0.000000952
Максимальный разовый выброс ЗВ, г/с
_G_ = Gis * Bmax / 3600 / _S_ * Tn / 20 = 0.056 * 0.425 / 3600 / 1 * 10 / 20 = 0.000003306

Примесь: 0164 Никель оксид /в пересчете на никель/

Удельное выделение загрязняющих веществ,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 0.97
С учетом поправочных коэффициентов , Gis = Knost * Gis = 0.4 * 0.97 = 0.388
Валовый выброс ЗВ, т/год
_M_ = Gis * B / 10 ^ 6 = 0.388 * 17 / 10 ^ 6 = 0.0000066
Максимальный разовый выброс ЗВ, г/с
_G_ = Gis * Bmax / 3600 / _S_ * Tn / 20 = 0.388 * 0.425 / 3600 / 1 * 10 / 20 = 0.0000229

Примесь: 0146 Медь оксид (Меди оксид) /в пересчете на медь/

Удельное выделение загрязняющих веществ,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 1.65
С учетом поправочных коэффициентов , Gis = Knost * Gis = 0.4 * 1.65 = 0.66
Валовый выброс ЗВ, т/год
_M_ = Gis * B / 10 ^ 6 = 0.66 * 17 / 10 ^ 6 = 0.00001122
Максимальный разовый выброс ЗВ, г/с
_G_ = Gis * Bmax / 3600 / _S_ * Tn / 20 = 0.66 * 0.425 / 3600 / 1 * 10 / 20 = 0.00003896

Примесь: 0123 диЖелезо триоксид (Железа оксид) /в пересчете на железо/

Удельное выделение загрязняющих веществ,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 0.73
С учетом поправочных коэффициентов , Gis = Knost * Gis = 0.4 * 0.73 = 0.292
Валовый выброс ЗВ, т/год
_M_ = Gis * B / 10 ^ 6 = 0.292 * 17 / 10 ^ 6 = 0.00000496
Максимальный разовый выброс ЗВ, г/с
_G_ = Gis * Bmax / 3600 / _S_ * Tn / 20 = 0.292 * 0.425 / 3600 / 1 * 10 / 20 = 0.00001724

Примесь: 0326 Озон

Удельное выделение загрязняющих веществ,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 0.73
Валовый выброс ЗВ, т/год
_M_ = Gis * B / 10 ^ 6 = 0.73 * 17 / 10 ^ 6 = 0.0000124
Максимальный разовый выброс ЗВ, г/с
_G_ = Gis * Bmax / 3600 / _S_ * Tn / 20 = 0.73 * 0.425 / 3600 / 1 * 10 / 20 = 0.0000431

Примесь: 0207 Цинк оксид /в пересчете на цинк/

Удельное выделение загрязняющих веществ,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 0.58
С учетом поправочных коэффициентов , Gis = Knost * Gis = 0.4 * 0.58 = 0.232
Валовый выброс ЗВ, т/год
_M_ = Gis * B / 10 ^ 6 = 0.232 * 17 / 10 ^ 6 = 0.000003944
Максимальный разовый выброс ЗВ, г/с
_G_ = Gis * Bmax / 3600 / _S_ * Tn / 20 = 0.232 * 0.425 / 3600 / 1 * 10 / 20 = 0.0000137
——————————
Газы:

Примесь: 0301 Азота диоксид (Азот (IV) оксид)

Удельное выделение оксидов азота,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 0.13
С учетом трансформации оксидов азота в атмосфере,
валовый выброс ЗВ, т/год , _M_ = 0.8 * Gis * B / 10 ^ 6 = 0.8 * 0.13 * 17 / 10 ^ 6 = 0.000001768
Максимальный разовый выброс ЗВ, г/с , _G_ = 0.8 * Gis * Bmax / 3600 / _S_ * Tn / 20 = 0.8 * 0.13 * 0.425 / 3600 / 1 * 10 / 20 = 0.00000614

Примесь: 0304 Азот (II) оксид (Азота оксид)

Валовый выброс ЗВ, т/год , _M_ = 0.13 * Gis * B / 10 ^ 6 = 0.13 * 0.13 * 17 / 10 ^ 6 = 0.0000002873
Максимальный разовый выброс ЗВ, г/с , _G_ = 0.13 * Gis * Bmax / 3600 / _S_ * Tn / 20 = 0.13 * 0.13 * 0.425 / 3600 / 1 * 10 / 20 = 0.000000998

ИТОГО:
Код Примесь Выброс г/с Выброс т/год
0123 диЖелезо триоксид (Железа оксид) /в пересчете на железо/ 0.0000692 0.00002488
0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ 0.00000331 0.000000952
0146 Медь оксид (Меди оксид) /в пересчете на медь/ 0.00003896 0.00001122
0164 Никель оксид /в пересчете на никель/ 0.0000229 0.0000066
0207 Цинк оксид /в пересчете на цинк/ 0.0000137 0.000003944
0301 Азота диоксид (Азот (IV) оксид) 0.00000614 0.000001768
0304 Азот (II) оксид (Азота оксид) 0.000001 0.0000002873
0326 Озон 0.0000431 0.0000124

Читать еще:  Как сделать споттер своими руками

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 022, Объект N 0031,Вариант 1
Источник загрязнения N 0002,
Источник выделения N 003, ______________________________________________________________________
Список литературы:
1. Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выделений) СПб, НИИ Атмосфера, 2000
2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), CПб, НИИ Атмосфера, 2005
______________________________________________________________________

Работы проводятся на открытом воздухе
Максимальная продолжительность работы в течении 20 минут, в минутах , Tn = 10

РАСЧЕТ выбросов ЗВ от сварки металлов
Вид сварки: Полуавтоматическая сварка титановых сплавов среде аргона и гелея
Электрод (сварочный материал): Проволока
Общий расход сварочных материалов , кг/год , Bo = 50
Расход сварочных материалов за вычетом огарков электродов, кг/год , B = 0.85 * Bo = 0.85 * 50 = 50
Время работы сварочного оборудования, час/cутки , _S_ = 1
Число дней работы участка в году , Dr = 50
Время работы сварочного оборудования, час/год , _T_ = Dr * _S_ = 50 * 1 = 50
Максимальный общий расход сварочных материалов за день, кг , Bmaxo = 1
Расход сварочных материалов за вычетом огарков электродов, кг/день , Bmax = 0.85 * Bmaxo = 0.85 * 1 = 1

Удельное выделение сварочного аэрозоля,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 14.7
в том числе:

Примесь: 0118 Титан диоксид

Удельное выделение загрязняющих веществ,
г/кг расходуемого материала (табл. 5.1-5.3) , Gis = 14.7
С учетом поправочных коэффициентов , Gis = Knost * Gis = 0.4 * 14.7 = 5.88
Валовый выброс ЗВ, т/год
_M_ = Gis * B / 10 ^ 6 = 5.88 * 50 / 10 ^ 6 = 0.000294
Максимальный разовый выброс ЗВ, г/с
_G_ = Gis * Bmax / 3600 / _S_ * Tn / 20 = 5.8

Воздействие азота и аргона на организм человека

Основные сведения об азоте и аргоне

Азот – газ без цвета и запаха. На предприятиях черной металлургии используется азот чистой 95-97%; азот чистый с содержанием примесей менее 0,01% и азот жидкий чистотой более 99%.

При испарении жидкого азота, содержащего небольшое количество кислорода, в первую очередь испаряется азот, в результате чего концентрация кислорода в жидкости увеличивается и может достигнуть значений, при которых возникает опасность загорания и взрыва в ней ряда веществ и материалов.

Аргон – газ без цвета и запаха. При охлаждении до температур жидкого азота и жидкого аргона многие материалы становятся хрупкими.

Аргон тяжелее воздуха и может скапливаться в приямках, колодцах, тупиках, вытесняя при этом воздух. Содержание кислорода может снижаться ниже предельных величин. Выравнивание концентрации за счет диффузии происходит медленно и зависит от объемов, геометрических форм, притока аргона в атмосферу, его температуры. Температура азота или аргона имеет большое значение. Так, несмотря на то, что азот легче воздуха, он, как и аргон может скапливаться в приямках и колодцах, если температура поступающего азота ниже температуры воздуха.

Применение азота и аргона

Азот газообразный используется для охлаждения редуктора бесконусного загрузочного устройства доменных печей, уплотнения газоотводящих тракторов конвертеров, производства защитных атмосфер и т. д.

Азот жидкий – для обработки деталей в цехах главного механика, в лабораториях и т. д., а после газификации – для различных технологических нужд на предприятиях, не имеющих собственных кислородных станций.

Аргон в значительных количествах используется в сталеплавильных цехах для повышения качества стали, а также при сварке и резке.

Азот и аргон доставляются потребителями тремя способами. По трубопроводам, в основном, на предприятиях, их производящих. На этих предприятиях, как правило, существуют сети магистральных аргоно — и азотопроводов. В баллонах или реципиентах под давлением 150-165 кгс/см2 азот и аргон используются в местах с небольшими объемами потребления или при периодической потребности в этих газах. При большой потребности в этих газах и значительном удалении от места производства азот и аргон доставляются в жидком виде с последующей газификацией в специальных установках. Жидкий азот используется также в качестве хладоагента при эпизодических работах. Например, для замораживания грунта при строительстве фундамента, разрушении старых фундаментов, тушении пожаров в шахтах и т. п.

Быстрый рост использования азота и аргона в различных процессах и отсутствие необходимой и доступной информации о свойствах этих газов и влиянии их на человеческий организм являются основными причинами несчастных случаев.

В приведенных ниже сведениях о влиянии на организм человека атмосферы с пониженным содержанием кислорода и мерах первой помощи использованы данные института медико-биологических проблем и института биофизики.

Физиологическое воздействие азота и аргона на человека

Аргон и азот – физиологически инертные, нетоксичные газы. Замещая кислород в воздухе и вытесняя собой кислород из организма, они воздействуют на человека как удушающие агенты (асфиксанты) по причине снижения парциального давления кислорода.

При медленном снижении содержания кислорода в атмосфере до непродолжительно переносимого организмом уровня (5-7%) обнаруживаются симптомы: • учащение дыхания и пульса, ритм дыхания может быть волнообразным (периоды учащения дыхания сменяются периодами замедления);
• потеря равновесия, головокружение, возможна эйфория;
• чувство тяжести или сдавливания в лобной части головы;
• стук в висках;
• чувство жара во всем теле;
• чувство покалывания в языке, кончиках пальцев рук и ног;
• затруднение речи;
• прогрессивно (возможно быстро) снижающаяся физическая работоспособность, нарушение координации;
• изменение восприятия окружающей обстановки и угнетение функции органов чувств, особенно осязания;
• возможны «провалы» памяти и потеря сознания.

Симптомы могут появляться в зависимости от индивидуальной предрасположенности человека к действию гипоксии.

При резком снижении содержания кислорода в атмосфере и, особенно при случайном попадании человека в среду азота или аргона достаточно нескольких вдохов для снижения парциального давления кислорода в крови до критического уровня – наступает потеря сознания, практически всегда внезапно.

Разницы в воздействии на человека аргона или азота при полном вытеснении ими из атмосферы кислорода не существует.

При вдыхании гипоксической, но переносимой организмом, смеси воздуха с аргоном в отличие от азота индивидуально может проявляться слабое наркотическое действие аргона, выражающееся небольшой эйфорией. Но принципиального значения относительно угрожающей опасности это не имеет.

Меры первой помощи попавшему в атмосферу с пониженным содержанием кислорода

При обнаружении зоны с пониженным содержанием кислорода и человека в этой зоне необходимо немедленно вызвать газоспасателей.

Пострадавшего необходимо эвакуировать из загазованной зоны на свежий воздух. Оказывающий помощь должен воспользоваться кислородно-изолирующим прибором или шланговым противогазом. В случае применения шлангового противогаза необходимо контролировать содержание кислорода вместе забора воздуха непрерывным автоматическим анализатором в присутствии наблюдающего.

Пострадавшему развязать галстук, расстегнуть рубашку, пояс брюк (у мужчин дыхание преимущественно брюшное). Если пострадавший находится в сознании, а также при потере сознания с сохранением дыхания достаточно создать ему покой. Допустимо дыхание чистым кислородом (кислородная подушка).

При потере сознания и остановке дыхания следует немедленно сделать искусственное дыхание до его восстановления (способом «рот в рот» или с применением специальных аппаратов; другие способы искусственного дыхания малоэффективны). После полного восстановления дыхания допустимо дыхание кислородом.

Объем оказания дальнейшей помощи должен определяться врачом.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]