Бронзирование металла в домашних условиях

Гальваника своими руками в домашних условиях: технология и оборудование

Гальваника – это и раздел прикладной науки «Электрохимия», в котором изучаются процессы, протекающие при осаждении катионов металла на катоде, помещенном в электролитический раствор, и технологический процесс. Гальваника в домашних условиях или выполняемая на производстве позволяет наносить на поверхность обрабатываемого изделия тонкий слой металла, который может выступать в роли защитного или декоративного покрытия.

Домашняя гальваническая установка

Особенности процесса

Покрытие, формируемое на обрабатываемой детали при помощи гальваники, может наноситься в технологических целях либо выполнять декоративные, защитные или сразу обе функции. В декоративных целях создают тонкий слой золота или серебра, а чтобы обеспечить надежную защиту поверхности обрабатываемой детали от коррозии, выполняют цинкование или гальваническое меднение.

Схема процесса электролиза

Сделать гальванику даже в домашних условиях несложно. Выполняют такую процедуру следующим образом.

  • В диэлектрическую емкость с электролитом опускают два анода, подключаемые к плюсовому контакту источника электрического тока. Материалом изготовления таких анодов должен быть металл, слой из которого необходимо сформировать.
  • Само обрабатываемое изделие, подключаемое к минусовому контакту источника электрического тока и, таким образом, выступающее в роли катода, помещается в электролите между анодами.
  • Гальванизация, то есть процесс переноса молекул металла с электролита на изделие-катод, начинает происходить в тот момент, когда замыкается полученная электрическая сеть.

В результате на обрабатываемой поверхности формируется тонкий и однородный слой металла, который изначально содержался в химическом составе электролита.

Схема гальванической установки

Необходимое оборудование

Гальваника своими руками может быть качественно выполнена с использованием даже самого простейшего оборудования, которое есть в арсенале многих мастеров. В первую очередь следует подобрать источник постоянного тока, который обязательно должен быть оснащен регулятором выходного напряжения. Наличие такого регулятора необходимо для того, чтобы иметь возможность плавно и в широких пределах изменять мощность вашего самодельного устройства для гальваники.

В качестве источника питания в домашних условиях очень удобно использовать выпрямитель электрического тока, который можно собрать самостоятельно (или приобрести серийную модель). Многие умельцы, выполняющие нанесение гальванического покрытия в домашних условиях, в качестве источника тока применяют серийные сварочные аппараты.

Для домашней гальваники подойдет стабилизированный блок питания с регулируемым напряжением (1,5–12 В)

Гальваническая ванна своими руками также может быть изготовлена без особых проблем. В качестве такой ванны можно использовать любую емкость из стекла или пластика, при этом необходимо учитывать, что в такую емкость для гальваники должна помещаться как обрабатываемая деталь, так и требуемое количество электролита. Очень важно также, чтобы ванна была достаточно прочной и могла выдерживать высокую температуру, величина которой может доходить до 80°.

Аноды, используемые для осуществления гальваники в домашних условиях, выполняют сразу несколько важных функций:

  • подводят в электролит электрический ток и обеспечивают равномерное распределение последнего по обрабатываемой поверхности;
  • возмещают убыль наносимого на изделие металла, расходуемого из химического состава электролита;
  • способствуют протеканию некоторых окислительных процессов.

Выбирая аноды для своего гальванического аппарата, следует соблюдать одно важное правило: их площадь должна быть больше, чем площадь обрабатываемой поверхности.

Гальваника дома не может быть осуществлена без использования нагревательного прибора, при помощи которого электролит доводится до требуемой рабочей температуры. Очень удобно, когда интенсивность нагрева, обеспечиваемого таким устройством, может регулироваться. Если ориентироваться на опыт домашних умельцев, которые уже имеют опыт нанесения гальванических покрытий в домашних условиях, можно порекомендовать использовать в качестве нагревательного прибора небольшую электроплитку или обычный утюг с регулировкой степени нагрева подошвы.

Что потребуется для приготовления электролита

Чтобы безопасно хранить в домашних условиях химические реактивы, из которых будет готовиться электролит для гальваники, а также сам готовый раствор, вам потребуется стеклянная посуда с притертыми крышками. Количество химических реактивов, из которых готовится электролитический раствор, необходимо отмерять с точностью до одного грамма. Для решения такой задачи в домашних условиях подойдут даже недорогие электронные весы, которые можно приобрести в любом хозяйственном магазине.

Готовый электролит можно слить и в пластиковую бутылку, но для кислотных составов нужно использовать стеклянную посуду

Если вы решили заняться нанесением гальванических покрытий на различные изделия в домашних условиях, то наверняка столкнетесь с проблемой приобретения химических реактивов, из которых готовится электролитический раствор. Дело в том, что организации, производящие и реализующие такие химические вещества, могут продавать их только тем, кто имеет соответствующие разрешительные документы. Приобрести такие химические реактивы частному лицу или даже организации, не обладающим такими документами, проблематично.

Для нанесения декоративных металлизированных покрытий можно приобрести специальные комплекты, состоящие из всех необходимых компонентов

Как правильно подготовить изделие к процедуре

После того как вы изготовили свой гальванический аппарат, нашли все необходимое оснащение и химические составляющие, можно приступать к такому важному процессу, как подготовка изделия, которое будет подвергаться гальванике. Важность такого процесса очень сложно переоценить, так как именно от качества его выполнения во многом зависит то, какими характеристиками будет обладать готовое покрытие.

В большинстве случаев подготовка изделия к гальванике не ограничивается только очисткой его поверхности от загрязнений и ее обезжириванием. Выполняются также пескоструйная обработка и последующая шлифовка с использованием наждачной бумаги и специальных паст.

Гальваническое покрытие выделяет все недостатки поверхности, поэтому обрабатываемая деталь должна быть идеально подготовлена, то есть устранены все сколы, царапины и раковины

Для того чтобы обезжирить обрабатываемую поверхность перед гальваникой, можно использовать органические растворители в чистом виде или приготовить для этих целей специальный раствор. В частности, для эффективного обезжиривания стали или чугуна в домашних условиях готовят растворы, в состав которых входят едкий натр, жидкое стекло, карбонат натрия и фосфат натрия. Обезжиривание изделий из таких металлов выполняют в нагретом до 90° растворе. Цветные металлы можно эффективно обезжирить растворами, содержащими в своем составе хозяйственное мыло и фосфорнокислый натрий.

Составы щелочных обезжиривающих растворов

Чтобы получить качественное гальваническое покрытие как в домашних, так и в производственных условиях, с обрабатываемой поверхности необходимо также удалить окисную пленку, для чего используют специальные декапирующие растворы с серной или хлороводородной кислотой.

Требования техники безопасности

Любая гальваническая операция (цинкование, хромирование, никелирование, меднение и др.) является опасным технологическим процессом, поэтому при ее выполнении в домашних условиях необходимо строго следовать требованиям техники безопасности. Опасной гальванику делают как токсичные химические вещества, так и высокая температура нагрева электролита, а также риски, связанные с любыми электрохимическими процессами.

Для проведения гальваники в домашних условиях лучше отвести нежилое помещение, в качестве которого может выступать гараж или мастерская. В нем обязательно должна быть организована качественная вентиляция. Все электрическое оборудование, которое вы будете использовать для того, чтобы сделать гальванику, необходимо заземлить.

Резиновые перчатки, очки и респиратор – минимум необходимых защитных средств

Личная безопасность – самое важное правило, которого следует строго придерживаться при осуществлении гальваники в домашних условиях. К мерам, которые способны обеспечить такую безопасность, следует отнести:

  • использование респиратора для защиты дыхательных путей;
  • защита рук при помощи мягких и прочных резиновых перчаток;
  • использование при работе клеенчатого фартука и обуви, способной защитить от ожогов кожу ног;
  • защита органов зрения при помощи специальных очков.

Кроме того, во время процедуры гальваники не следует ничего есть и пить, чтобы случайно не наглотаться и вредных испарений.

Читать еще:  Мобильная сверлильная стойка для дрели

Чтобы быть готовым к любым неожиданностям, которые могут возникнуть в процессе выполнения такой операции, лучше предварительно почитать специальную литературу или даже посмотреть обучающее видео на данную тему.

Никелирование

Покрытие металла слоем никеля в домашних условиях могут выполнять в качестве финишной обработки или перед хромированием. Такой процесс получил название «гальваностегия», так как наносимый на поверхность изделия слой никеля повышает ее устойчивость к негативным факторам внешней среды. Кроме высоких защитных свойств, никелевый слой отличается и декоративной привлекательностью.

Температура электролита при выполнении никелирования не превышает 25°, а плотность тока находится в пределах 1,2 А/дм 2 . Электролит, кислотность которого должна находиться в пределах 4–5 pH, представляет собой водный раствор, в состав которого входят такие химические элементы, как сульфат никеля, магний, натрий, пищевая соль, борная кислота.

После завершения процесса гальваники изделие извлекают из электролитического раствора, промывают в воде, тщательно просушивают и полируют.

Хромирование

Гальваническое хромирование в домашних условиях или на производственном предприятии позволяет придать поверхностному слою обрабатываемого изделия более высокую твердость, устойчивость к коррозии, а также декоративность. Поскольку хромовое покрытие отличается достаточно высокой пористостью, его выполняют после гальванического нанесения меди на обрабатываемую деталь (либо никелирования). Для выполнения такой технологической операции используют аноды, которые изготовлены из сплава свинца, олова и сурьмы.

Установка гальванического хромирования

На конечный результат хромирования, выполнить которое в домашних условиях достаточно сложно, так как для этого необходимо использовать токи высокой плотности – до 100 А/дм 2 , оказывают влияние различные факторы. К наиболее значимым из них следует отнести:

  • температуру используемого электролита – от данного параметра зависит оттенок формируемого покрытия, которое может быть матовым (температура ниже 35°), блестящим (35–55°) и молочным (выше 55°);
  • химический состав электролита, оказывающий влияние на защитные свойства формируемого покрытия, а также на его цвет, который может быть темно-голубым, синим, агатовым.

Заключительным этапом хромирования после извлечения детали из электролитического раствора является промывка обработанной поверхности водой, последующая нейтрализация в растворе пищевой соды, еще одна промывка, просушка и полировка с использованием специальных паст.

Меднение с использованием гальваники в домашних условиях необходимо для того, чтобы создать на поверхности обрабатываемого изделия токопроводящий слой, отличающийся небольшим значением электрического сопротивления, а также для того чтобы защитить деталь от негативного воздействия внешней среды.

Наносить слой меди на стальные и чугунные изделия, предварительно не покрыв их слоем никеля, смертельно опасно, так как для этого необходимо использовать цианистый электролит.

После предварительного никелирования металл покрывают слоем меди с использованием раствора сернокислой меди, концентрированной серной кислоты и воды комнатной температуры.

Золочение и серебрение

Покрытие металла слоем серебра или золота – это не только гальванопластический метод обработки, при котором с поверхности обрабатываемого изделия получают точную копию, но и технология, позволяющая создать на детали защитный и токопроводящий слой. Чтобы нанести на деталь из черного металла серебро, ее необходимо предварительно покрыть никелем.

Электролит для выполнения серебрения включает в свой состав железноцианистый калий, карбонат натрия и дистиллированную воду. Рабочая температура такого раствора не должна превышать 20°. В качестве анодов при выполнении серебрения методом гальваники используются пластины из графита.

Для серебрения детали опускаются в электролит, содержащий соль металла, например, нитрат серебра

Возможна также гальванопластика дома, в процессе выполнения которой поверхность изделия формируется при помощи слоя золота. Кроме того, при помощи такой технологии может быть выполнено и простое золочение детали. При этом для гальваники применяется водный раствор золота с синеродистым калием. Работать с таким электролитическим раствором можно только в помещениях с хорошей вентиляционной системой.

Многие домашние мастера задаются вопросом о том, как сделать процесс золочения более безопасным для человеческого здоровья. Для решения этой задачи ядовитую кислоту можно заменить на железистосинеродистый калий, который также называют кровавой солью. Перед выполнением золочения в домашних условиях изделие тщательно очищают и покрывают медью, если оно изготовлено из стали, свинца, олова или цинка. Для улучшения адгезии слоя золота с обрабатываемой поверхностью изделие перед обработкой окунают в раствор азотнокислой ртути.

При выполнении золочения в электролит вместе с анодами помещают листик золота. После окончания гальваники изделие просушивают в опилках, а затем полируют.

Бронзирование металла в домашних условиях

1. Бронзирование чугуна

Хорошо вычищенную и отглаженную поверхность смазывают каким-нибудь растительным маслом и сильно нагревают, однако, до такой степени, чтобы не была достигнута точка воспламенения масла. При этом на поверхности железа образуется коричневый слой окиси, бронзообразного вида который прочно держится и поддается полировке.

2. Бронзирование олова

Приготовляют 2 раствора:

2.1. 1 уксуснокислой меди на 4 уксуса.

2.2. 1 медного купороса и 1 железного купороса в 20 воды. Предметы смазывают раствором 2.2 и после просушки прочищают мягкой щеткой и порошком кровавика. Затем смазывают раствором 2.1 и после просушки полируют мягкой щеткой, смазанной маслом.

Проект «Умеха — мир самоделок» существует с 2005 года и с тех пор постоянно наполняется и совершенствуется. Основная доля документов, представленных на сайте материалов, предназначена для людей хозяйственных, интересующихся ведением собственного подсобного хозяйства, строительством, ремонтом и благоустроиством собственных домов, квартир или дачных участков.

У хорошего хозяина обязателно дожна быть своя мастерская и необходимые инструменты. К сожалению, не все станки по карману рядовому домашнему мастеру, с этой целью на сайте представлена большая коллекция чертежей и описаний самодельных токарных станков по дереву и металлу, а так же других инструментов и приспособлений для домашнего мастера.

Для людей занимающихся ведением своего личного подсобного хозяйства (ЛПХ) или фермерством, большая рубрика «Свое хозяйство» для удобства поделена на несколько узкотематических разделов, среди которых отдельными пунктами выделены такие темы, как парники и теплицы, цветы и флористика, деревья и кустарники, птицеводство и животноводство, пчеловодство и рыбоводство. Много статей опубликовано по теме «Сад и Огород».

Для любителей и любительниц кухонного искусства на сайте огранизована большая кулинарная рубрика. В ней Вы всегда найдете рецепты салатов, супов, закусок, напитков и экзотических блюд по своему вкусу. С недавних пор существует так же рубрика о красоте, здоровьи, правильном питании и здоровом образе жизни (ЗОЖ) вообще.

Работа в Интернете — этот вопрос нет-нет, да интересует Интернет-пользователей. Этот пробел я по-немногу наполняю своими силами и рассчитываю на помощь в этом деле добровольных авторов. Для этого на сайте так же имеется специальное место.

Для удобства посетителей из других стран на сайте работает онлайн переводчик на пять языков мира.

И это далеко не все возможности сайта «Умеха — мир самоделок».

  • Копирование материалов сайта возможно при условии прямой активной ссылки на сайт Познавательный Интернет-журнал «Умеха — мир самоделок»
    и обязательным указанием автора и источника материала, кроме материалов, где в конце явно указано на запрет копирования.
  • По всем вопросам вы можете обратиться к администратору сайта через форму обратной связи

    О гальванике — без формул

    Что же это такое интересное, что заставило матерую валяльщицу ))) задвинуть подальше ящик с шерстью и начать создавать совсем другую красоту? Честно говоря, я занялась гальваникой с одной лишь целью — меднить и латунить фурнитуру для своих войлочных сумок, ведь так трудно подобрать все одного цвета! Но оказалось, что с большей частью фурнитуры этот номер не проходит, но зато в гальванике столько возможностей!! Не оторваться!))

    О том, что такое гальваника, полным-полно статей в интернете, также там приводятся схемы электрической цепи и химический состав растворов — во все это «сильно заумное» многие не хотят или не могут вникать, да собственно, и незачем, если не собираешься этим заняться. Мне удобно думать, что мозг устроен так же, как компьютер, и любая лишняя информация, накопленная в нем, ухудшает быстродействие, не оставляет свободного пространства для творчества. Поэтому для многих вещей достаточно общего понимания, если появится необходимость — всегда можно поднакопить информации, разобраться подробнее.

    Читать еще:  Как сделать ручную лебедку своими руками

    Вряд ли я расскажу о гальванике лучше, чем это сделал Владислав Киселевич , его видео «Мастер-класс Гальваника в домашних условиях», по моему мнению, лучший в ру-нете.

    Но все же попробую сказать пару слов о гальванике без схем и формул, специально для моих подписчиков и коллег по «войлочному цеху», озадаченных метаморфозами в моем магазине))). Очень много вопросов и догадок, иногда весьма забавных)))

    Я не «окунаю всякое в жидкую медь» — это невозможно, медь — твердая. И не крашу медной краской — вещицы получаются действительно медные, твердые и прочные. И не отливаю из меди — плавить металл — это для меня пока слишком сложно! И, да — гальванику не я придумала, и омеднять растения — тоже! )))) А суть процесса в следующем.

    В посудке разводится «маринад» из большого количества воды и пары флаконов химии из хозяйственного магазина. В основе химии — медный купорос, синенькие кристаллы, знакомые дачникам — его используют как удобрение. И автомобильный электролит, который автомобилисты наливают в аккумулятор. В посудку (емкость, которую называют гальванической ванной) — с одной стороны помещается кусок настоящей меди — лист или трубка (трубки легче купить, они продаются много где и используются в кондиционерах и холодильниках). Эту пластинку называют Анод. С другой стороны в емкость помещается деталька, которая хочет стать медной. Как только она погружается в раствор, ее называют Катод. (прим.: в гальванике, в отличие от электролиза, + и — меняются местами. Впрочем я и сама путаю термины, поправьте, если опять ошиблась, главное — не перепутать провода, «+» — красный — на отдающую пластину, «-» — черный — на принимающую). Точный рецепт «маринада» ищется по запросу «состав электролита для меднения», кто заинтересуется формулами и цифрами, найдет без затруднений.

    Эта деталька, которую хотим покрыть медью, обязательно должна уметь проводить ток, то есть, быть металлической, или ее покрывают специальным составом, который ток проводит. Чаще всего это лак на основе графита — того самого, что в карандашах. Лак продается в магазинах для радиолюбителей, дороговат, но вполне доступен. Затем к листу меди и к детальке прикрепляются проводки и на них подается электричество — совсем небольшое, не более чем при зарядке телефона. И тут начинается волшебство. Медь с пластины «растворяется» в «маринаде» и нарастает на детальке. То есть лист меди отдает свои частички, а деталька эти частички принимает. Химический раствор и электричество помогают микро-частицам металла поменять место жительства .

    У меня эта конструкция выглядит так:

    Чем дольше деталька находится в растворе, тем больше меди на ней нарастает, и тем тверже она становится. Процесс это довольно долгий, несколько часов, а то и дней — чем больше деталька и чем толще нужно получить слой меди — тем дольше. И тем сильнее «худеет» лист меди, отдающий себя во благо)))

    Гальванику используют не только для меднения, но и для покрытия предметов другими металлами, в том числе и драгоценными. Но это в домашних условиях делать сложно и опасно — химия используется совсем другая, не из супермаркета, и отдающий металл, разумеется, должен быть тот же, которым изделие покрывается. Металлом можно покрыть любой объект или часть объекта, или сделать металлическую копию — в этом и есть смысл гальваники.

    Органические предметы (растения, перышки, ракушки и т.п.) предварительно нужно полностью покрыть графитом, а потом меднить. При этом растение получается в меди, как в саркофаге — без доступа воздуха оно не гниет и не портится. Слой меди нужно делать довольно толстым — чтобы было прочно. Металлические предметы (правда, не все металлы подходят) меднятся сами, без графита.

    Многие материалы нельзя погружать в элктролит, например, первое, что я сделала, конечно же — частично обмазала графитом войлочный шарик и сунула его в раствор! Если у вас есть машина и электролит хоть раз попадал на вашу одежду, вы поймете что произошло))) таки да, шерсть в раствор — нельзя! и еще много чего нельзя, без риска испортить волшебный бульончик.

    Так что если надумаете вникать в тему и попробовать это увлекательное занятие — не размахивайтесь сразу на аквариум в 20 литров, попробуйте в малых количествах.

    Гальваническое покрытие металлом можно нанести и на маленькую бусинку, и на целый большой памятник! Но для этого, конечно, нужна не маленькая посудка, а целый большой бассейн раствора и много-много металла. Еще — большие и криволинейные объекты покрывают металлом гальванической кистью, но это уже другая история. Так реставрируют памятники, например, гальваникой — бронзой — покрыта четверка лошадей на фронтоне Большого театра.

    В домашних условиях и «для девочек» интереснее всего меднить различные природные объекты и делать из них потом украшения.

    Меднение растений процесс увлекательный, но больше меня привлекло в гальванике другое — создание текстур.

    НЕКОТОРЫЕ ОСОБЕННОСТИ ПРОЦЕССА БРОНЗИРОВАНИЯ ИЗ СУЛЬФАТНЫХ ЭЛЕКТРОЛИТОВ

    Космодамианская Л.В., Тютина К.М., Николаева О.Е., Ле Хюэ Хыонг, Одинокова И.В.

    РХТУ им. Д.И. Менделеева, г. Москва РХТУ им. Д.И. Менделеева

    125047, Москва, Миусская пл.,9. Факс: (095)200-42-04; тел. (095)978-61-95;

    Одной из возможностей замены благородных металлов является использование покрытий сплавом медь-олово. Бронзовые покрытия находят промышленное использование в основном для декоративных и специальных целей. Покрытия сплава медь-олово, содержащие 10-20% олова, обладают достаточно высокой микротвердостью, низким коэффициентом трения и имеют приятный внешний вид. Покрытия белой бронзой, содержащие 40-70% олова, легко полируются, хорошо паяются, имеют внешний вид и коэффициент отражения близкие к серебру.

    В настоящее время наиболее перспективными являются сульфатные электролиты бронзирования, отвечающие требованиям современного производства: они малотоксичны, сравнительно дешевы, просты в эксплуатации и обладают многими довольно высокими технологическими показателями.

    Для электроосаждения сплава Cu-Sn предложен сульфатный электролит, содержащий сернокислые соли меди и олова, серную кислоту, сернокислый натрий или калий, антиоксидант, НПАВ (ОС-20 или Синтанол ДС-10) и блескообразующую добавку ЦКН-31. Электролит работает при перемешивании катодной штангой – 28-30 кач/мин и температуре 18-25°С.

    Из предложенного сульфатного электролита в интервале катодных плотностей тока от 0,5 до 2 А/дм 2 осаждаются полублестящие золотистые покрытия, содержащие 83-90% меди с выходом по току 96-100%. При дальнейшем повышении плотностей тока от 2,5 до 5,5 А/дм 2 получаются зеркально-блестящие золотисто-желтые осадки, но при этом содержание меди в сплаве падает до 25-30%, а выход по току снижается с 95 до 92%.

    Химический и фазовый составы бронзовых покрытий из сульфатных электролитов существенно зависят от катодного потенциала. При смещении потенциала в отрицательную сторону сплав значительно обогащается оловом, при этом также изменяются составы интерметаллических соединений из которых в основном состоят бронзы. С этим, по-видимому, и связан сложный характер катодной поляризационной кривой осаждения бронзы.

    В результате исследования химической устойчивости сульфатных электролитов бронзирования было установлено, что ионы Cu 2+ практически не влияют на окисление Sn 2+ в растворе. Однако, при наличии медной пластин опущенной в сульфатный электролит наблюдается протекание реакции Sn 2+ →Sn 4+ +2e (на поверхности Cu). Следует предположить, что окисление Sn 2+ до Sn 4+ происходит по электрохимическому механизму с участием Cu 2+ , который может восстанавливаться до металлической меди Cu 0 по реакции Cu 2+ +2e→Cu 0 (на медной пластине) либо с участием атомов кислорода воздуха. Медная пластина, вероятно, является переносчиком электронов. Не исключается возможность того, что медная пластина является инициатором (или катализатором) реакции взаимодействия Sn 2+ с кислородом, растворенным в электролите, либо находящимся в прилегающем к нему слое атмосферы.

    Читать еще:  Пескоструйная камера своими руками

    Наличие антиоксиданта – ЦКН-32 — не предотвращает окисление Sn 2+ до Sn 4+ , растворенном в растворе кислородом воздуха в присутствии ионов Cu 2+ , по-видимому, вследствии окислительно-восстановительной реакции между ионами Cu 2+ и антиоксидантом с образованием неактивной по отношению к кислороду окисленной формы ЦКН-32. В присутствии гидрохинона содержание Sn 2+ в растворе изменялось незначительно.

    Таким образом, рекомендуется после окончания электролиза, проводимого в сульфатном электролите бронзирования (в независимости от его конкретного состава), вынимать медные аноды из ванны (на время простаивания электролита в отсутствие поляризующего тока) с целью снижения дополнительной потери двухвалентного олова в растворе. Кроме того, в качестве антиоксиданта в сульфатном электролите предпочтительнее использовать гидрохинон.

    В процессе проведения длительного электролиза (при ik=1 A/дм 2 ) с медным анодом было установлено, что с увеличением количества пропущенного электричества происходит довольно быстрое уменьшение содержания Sn(II) в сульфатном электролите бронзирования, связанное, по-видимому, с его электрохимическим окислением на аноде до Sn(IV), затем процесс окисления несколько замедляется. Возможность окисления обусловлена значениями потенциалов растворения медного анода в диапазоне рабочих плотностей тока, расположенных значительно электроположительнее стандартного потенциала реакции окисления Sn(II) до Sn(IV). Концентрация меди в растворе изменилась незначительно.

    Проведение длительного электролиза в условиях разделения анодного и катодного пространств с помощью модуля с катионообменной мембраной МФ-4СК-1 и нерастворимым анодом показало, что скорость химического окисления Sn 2+ пренебрежительно мала.

    Таким образом, для повышения электрохимической устойчивости сульфатного электролита бронзирования желательно работать с разделением катодного и анодного пространств модулем с катионообменной мембраной и применением нерастворимого анода при корректировке электролита через 2-3 А*ч/л пропущенного электричества по солям олова и меди.

    Как сделать бронзу – основные этапы производства

    Как сделать бронзу? Этот вопрос стоит перед многими мастерами, желающими проявить себя в художественном литье, или людьми, решившими повысить свой уровень образованности в работе с различными металлическими сплавами. Чтобы ответить на этот вопрос, необходимо для начала разобраться что такое бронза, из чего она состоит и только потом подробно рассмотреть весь процесс плавки этого материала.

    1 Что такое бронза?

    Бронза (итал. “bronzo”) – это сплав в определенных пропорциях меди и олова, где медь всегда является первичным или основным компонентом, а олово вторичным или необязательным. Вместо него в сплав могут быть введены кремний, свинец, алюминий, бериллий и другие металлы, кроме никеля и цинка, хотя иногда и они вводятся в небольших пропорциях.

    Бронзовый сплав имеет свои достоинства и недостатки. К положительным техническим характеристикам можно отнести:

    • большую твердость и прочность по сравнению с медью;
    • легкоплавкость;
    • обладает всеми достоинствами для литья;
    • имеет высокие антикоррозийные свойства;
    • обладает хорошей устойчивостью к износу при длительном трении.

    Недостатками бронзы считаются:

    • плохо поддается ковке, штамповке и прокатке, то есть всем процессам, происходящим под давлением;
    • туго режется;
    • плохо затачивается.

    По названию добавляющегося металла происходит название полученного бронзового сплава. При добавлении олова получают оловянную бронзу, алюминия – алюминиевую бронзу, бериллия – бериллиевую и т. д.

    Классической (колокольной) или основной считается оловянная бронза, в которой медь берется из расчета 80 % ± 3 %, а олово – 20 % ± 3 % от всего сплава. При изготовлении бронзы могут легироваться другие металлы, например, никель, свинец, фосфор и мышьяк. Это делают для придания металлу дополнительных технических свойств. Бронза может быть однокомпонентной, при которой медь сплавляется с одним добавочным металлом, или многокомпонентной, где при сплавлении участвует несколько материалов. Многокомпонентные бронзы считаются более сложными и имеют улучшенные технические характеристики.

    Также процесс изготовления бронзы предусматривает получение первичного или вторичного материала. Чтобы получить первичный классический сплав, необходимо сплавить медь и олово, вторичный – при выплавке применить в качестве дополнительного компонента саму бронзу.

    Открытие бронзового сплава сыграло большую роль в развитии человеческой эпохи. Конец 4 тысячелетия до н. э. считается временем первого изготовления бронзы и началом длительного пути человека в освоении сплавов различных металлов. Открытие было настолько значимым в истории, что ознаменовало собой начало целой исторической эпохи – Бронзового века. Изготовить бронзу в древние времена было невероятно сложно, что подтверждают попытки получения металла в настоящее время в домашних условиях.

    2 Классическая технология изготовления бронзы

    Изготовить бронзу можно путем плавки основного компонента меди и дополнительного, например, олова, в стальной или чугунной вращающейся втулке с помощью электрической дуги.

    При плавлении оловянных бронз образуются оксиды при непосредственном взаимодействии меди и олова, что снижает технические свойства полученного сплава. Во избежании потери эксплуатационных свойств бронзы перед добавлением олова в расплавленную медь ее раскисляют фосфором, то есть в чистую медь добавляют фосфористую медь, где количество фосфора не превышает 10 %.

    Химическая реакция с образованием паров фосфорного ангидрида позволяет провести процесс удаления неметаллических включений в меди. Фосфор – это недорогой раскислитель, значительно снижающий хорошее свойство меди электропроводность. Поэтому иногда для избежания этого эффекта используются более дорогие компоненты в качестве раскислителя. К ним можно отнести кальций, литий и калий.

    Процесс плавления, чтобы получить бронзу, делают под слоем древесного угля или его смеси с содой – флюса, и он проходит в несколько общих этапов:

    1. Расплавление меди при температуре около 1100 °C под слоем флюса или угля.
    2. Ввод фосфористой меди (около 10 %) для раскисления.
    3. Добавление дополнительных компонентов для получения однокомпонентного сплава – олова, многокомпонентного – всех дополнительных составляющих, вторичного бронзового сплава – бронзы.
    4. Прогревание полученного сплава до температуры 1200 °C.
    5. Рафинирование – удаление вредных неметаллических примесей висмута, марганца, серы и сурьмы, а также иногда алюминия, железа, кремния и растворенных газов водорода и кислорода из сплава путем окисления основного компонента.
    6. Модифицирование для повышения механических свойств сплава.
    7. Разлив по формам при температуре до 1300 °C.

    Оловянные бронзы более просты в процессе выплавки и менее склонны к перегреву, чем алюминиевые. Для алюминиевой бронзы очень важен температурный режим, поэтому температура плавления выше 1200 °C не допускается.

    3 Изготовление неоловянных бронз

    Чтобы изготовить алюминиевую бронзу, необходимо не только следить за температурой, но и хорошо размешать сплав перед заливкой в формы. Это делается из-за большой разницы в плотности сплавляемых компонентов, ведь медь и алюминий могут расслоиться. Поэтому сам процесс немного видоизменяется:

    1. Медь расплавляется под флюсом и раскисляется.
    2. Вводятся дополнительные компоненты в чистом виде или в виде смеси с медью.
    3. Производится вторичное раскисление.
    4. Вводится алюминий.
    5. Засыпается поверхность сплава флюсом.
    6. Сплав рафинируется хлористым марганцем, модифицируется ванадием, бором или вольфрамом и заливается в формы.

    Бериллиевая бронза выплавляется по общим этапам в индукционных печах. В процессе применяют графитовые тигли. Высокая токсичность получаемой пыли и паров при изготовлении этого вида бронзы требует проведения выплавки в отдельных изолированных помещениях с мощной системой вентиляции.

    Кремнистые бронзы получают в электрических индукционных печах с применением древесного угля. Как и для алюминиевых, для кремниевых сплавов важен контроль за температурой плавления.

    Конечный продукт сплава представляет собой металлическую чушку, причем вес ее обычно не более 42 кг. Все чушки, получившиеся в результате разовой плавки, относят к одной партии, вес партии не ограничивается.
    Как и любая продукция, бронзовые чушки имеют документ о качестве, отражающий основную информацию: товарный знак производителя, марку выплавленной бронзы, массу и номер партии, количество чушек в партии и их химический анализ.

    Необходимость изготовления бронзы обусловлена широкой сферой применения. Арматура, все детали, работающие в непосредственном контакте с паром и маслами, вкладыши подшипников, фасонные элементы трубопровода – вот небольшой список использования бронзы.

  • Ссылка на основную публикацию
    ×
    ×
    Для любых предложений по сайту: [email protected]