Содержание
- Металл титан
- Основные сведения
- История открытия
- Свойства титана
- Марки титана и сплавов
- Достоинства / недостатки
- Области применения
- ПАРАДОКСАЛЬНЫЙ МЕТАЛЛ
- Двоякость свойств металла титан
- Свойства титана
- Какими способами получают титан?
- Области применения
- Физические характеристики и свойства одного из самых твердых металлов — титана
- Структура металла
- Свойства и характеристики титана
- Температура горения титана
- Смотрите также
Температура горения титана
Металл титан
Основные сведения
История открытия
Свойства титана
В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.
По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.
Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10 -8 до 80·10 -6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Физические и механические свойства
Химические свойства
Марки титана и сплавов
Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.
В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.
Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.
Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.
Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий.
Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.
Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.
Достоинства / недостатки
-
Достоинства:
- малая плотность (4500 кг/м 3 ) способствует уменьшению массы выпускаемых изделий;
- высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
- необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
- удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
-
Недостатки:
- высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
- активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
- трудности вовлечения в производство титановых отходов;
- плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
- высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
- плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
- большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.
Области применения
Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.
По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.
Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.
Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.
Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.
Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.
Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.
Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.
ПАРАДОКСАЛЬНЫЙ МЕТАЛЛ
В 1955 году в одном из номеров американского журнала «Современные металлы» появилась небезынтересная статья, автор которой назвал титан «парадоксальным металлом», имея в виду его противоречивые свойства. А противоречий у металла действительно оказалось предостаточно.
В самом деле, сырье для производства титана имеется в изобилии, добыча руды обходится очень недорого, а металл в деформированном виде в то время стоил дороже, чем серебро. Даже сейчас титан никак не назовешь дешевым материалом.
Еще один парадокс. Точка плавления титана лежит за пределами 1600 °С, но уже при температурах чуть выше 400 °С защитная оксидная пленка на его поверхности повреждается, металл насыщается газами и прочность его значительно понижается. Небольшие добавки других элементов повышают жаростойкость титана на 600 °С, однако такой показатель, конечно же, недостаточен для того, чтобы конкурировать с жаростойкими сплавами на основе железа и никеля.
Сварка титана с титаном не представляет особой сложности, но методы сварки этого металла с другими не разработаны до сих пор. Невозможность сварки титана с различными металлами представляет собой серьезную проблему, на решение которой расходуется много времени и средств. Любопытно и то, что, будучи цветным металлом, титан претерпевает фазовые превращения подобно железу и стали — металлам черным.
Рентгеновские исследования показали, что при комнатной и не слишком высокой температуре кристаллическая решетка у титана — шестигранной формы. С дальнейшим повышением температуры атомы титана перегруппировываются. Решетка
принимает форму куба и сохраняет ее вплоть до точки плавления.
Положения статьи можно развить и продолжить.
В азотной кислоте титан демонстрирует превосходную стойкость. Но вот что произошло однажды на американской военной базе Ванденберг. К запуску готовили очередную ракету. Обслуживающий персонал был достаточно квалифицированным и хорошо выполнял знакомую работу. Ничто как-будто не предвещало катастрофы. Но вот бак для окислителя стали заполнять азотной кислотой и в этот момент ракета взорвалась! Тревожно завыли сирены, засуетились машины скорой помощи, грузовики со спасателями помчались к месту аварии. В чем же причина взрыва и последующего пожара? Обслуживающий персонал не допустил никаких оплошностей, никаких нарушений. Но кто-то же был виновен в случившемся? Позднее выяснили, что этот ”кто-то” — титан, из которого был изготовлен бак для окислителя.
Да, титан показывает в концентрированной азотной кислоте завидную стойкость и практически в ней не разрушается. Но иногда при соприкосновении с кислотой, насыщенной оксидами азота, с так называемой красной дымящей азотной кислотой, титан, если он находится под напряжением, может взорваться. Причина кроется в том, что при определенном соотношении в кислоте воды и оксида азота защитная пленка на поверхности титана разрушается и начинается бурная химическая реакция, при которой выделяется водород и много тепла. А затем — взрыв! Взрывная волна в мгновение ока срывает с титана всю защитную пленку и тогда металл загорается.
Но загораются не только ракеты и не обязательно в контакте с кислотой. При определенных условиях порошок титана может вспыхнуть безо всяких контактов с огнем или с какими-либо пожароопасными веществами. Он может загореться самопроизвольно. Точно так же самопроизвольно способны вспыхивать и мелкая стружка, и титановые опилки. Стружка покрупнее может загореться от спички.
Огонь способен возникнуть и на листах титана, которые извлекают из травильных ванн, если температура раствора очень высокая.
Погасить горящий титан очень непросто. Обычно горение обеспечивает и поддерживает кислород, но титан горит даже тогда, когда в воздухе совершенно нет кислорода — ведь этот металл вступает в реакцию с азотом и горит в нем. Чтобы потушить титан, не прибегают к помощи пены, углекислого газа из огнетушителя, воды, которая, попадая на горячий металл, мгновенно разлагается на составляющие элементы — водород и кислород. Образуется гремучая смесь, которая тут же взрывается. Но чем же, в таком случае, тушат воспламенившийся титан? На помощь приходит специальный огнетушительный порошок или совершенно сухой песок. Они и справляются с полыхающим огнем титаном.
Справедливости ради надо заметить, что воспламенение титана случается очень и очень редко, причем почти всегда только в том случае, если недостаточно соблюдались меры предосторожности. Крупные же куски и обрезки металла сами не загораются. Впрочем, то, что титан способен воспламеняться, не всегда плохо. Пиротехники, например, считают, что основное достоинство титана как раз в этом и состоит: ведь благодаря этому можно устраивать ослепительно яркие фейерверки.
В магнитном поле титан не отталкивается подобно меди, золоту или серебру, но и почти не обладает магнитной восприимчивостью. И если железо, никель и некоторые другие металлы сильно притягиваются магнитным полем и остаются намагниченными, когда никакое поле на них уже не действует, то титан можно смело считать практически немагнитным материалом, так как его магнитные свойства выражены очень слабо.
Часто для бытовой электропроводки используют алюминий, так как он проводит электрический ток не намного хуже меди. В подобной роли мы никогда не увидим титан и не потому, что металл этот относительно дорог. Сколько бы ни снижалась его стоимость, электропроводность металла останется постоянной: в тридцать с лишним раз хуже, чем у меди.
Это тоже странно, так как металлы тем и отличаются от неметаллов, что хорошо проводят электричество и тепло. А вот титан — не такой. Кстати, и тепло он проводит тоже плохо.
Титан тверже железа, его ни в коем случае нельзя назвать мягким металлом. Алюминий, мы это прекрасно знаем, тоже не так уж и мягок. Так вот титан в двенадцать раз тверже, чем
алюминий, и однако Однако твердость его далеко не всегда
достаточна. Особенно это проявляется в тех случаях, когда нужно получить острую кромку, которая обладала бы режущими свойствами.
На одном из предприятий была выпущена опытная партия комплектов столовых приборов. Но когда хозяйки пустили в ход кухонные ножи с лезвиями из титана, разочарованию не было границ: ножи были тупыми и ничего не резали. Экспериментаторы решили было, что ножи просто плохо заточены и интенсивно принялись точить лезвия. Но лезвия по-прежнему остались тупыми. В чем же дело?
А в том, что для ножей титан — недостаточно твердый металл. Их обычно делают из особотвердой инструментальной стали, которая гораздо тверже титана. Поэтому затачивать ножи из титана — пустая затея. Вот почему в комплектах хирургических инструментов из титановых сплавов лезвия скальпелей сделаны не из титана, а из стали. В титановых же столовых наборах только вилки и ложки пригодны к употреблению, а что касается ножей, то они выполняют скорее декоративные, чем непосредственно режущие функции.
Титан имеет и другую характерную особенность, которая в еще большей мере препятствует широкому его использованию в трущихся узлах и деталях. Речь пойдет о склонности титана к налипанию, поверхностному схватыванию с другими металлами, в результате чего детали очень быстро выходят из строя.
При трении титан как бы прикипает к поверхности других металлов. Это приводит к тому, что металлические частицы отрываются от основной массы детали, причем если титан соприкасается с металлами, более твердыми, чем он, то вскоре они оказываются покрытыми слоем растертых частиц титана. И наоборот, если металлы более мягкие, то их частицы отрываются и прирастают к титану. Как в том, так и в другом случае, итог малоутешителен: детали как бы съедают одна другую.
Чтобы при трении изделия не разрушались, обычно применяют смазку, которая в значительной мере ослабляет трение. Это — обычно. Но титан — металл необычный, парадоксальный. Вот и при смазке он нисколько не изменяет своих свойств по части трения и налипания — не помогают масла и жиры, ни мыла, ни спирты и кислоты, ни другие обычно с успехом применяемые смазочные материалы. Даже твердая смазка — и та недостаточно эффективна. Лишь только графит и сернистый молибден оказываются более или менее пригодными смазочными веществами, но лишь в течение непродолжительного времени.
И все же титановые сплавы используют для изготовления трущихся деталей. Благодаря различным трудоемким методам обработки повышается твердость поверхности и намного уменьшается склонность металла к налипанию и задирам, что уменьшает износ деталей.
По склонности к налипанию в сомнительных случаях можно очень точно определить — титан ли тот металл, который у вас в руках. Если по мокрому стеклу провести куском металла и после этого на стекле останется серо-белая черта, значит, это действительно титан. Проба на искру также позволяет легко узнать его среди других металлов: при соприкосновении с абразивным кругом титан испускает пучок белых блестящих искр.
Как уже известно, титан противостоит действию серной кислоты только в том случае, если она очень разбавлена и ее концентрация не превышает 5 процентов. Чем выше концентрация, тем интенсивнее коррозия. Но как вы думаете, когда титан разрушается сильнее: находясь в 40-процентной или же в 60-процентной серной кислоте? Вы, вероятно, решите, что в более концентрированном растворе титан будет и корродировать болев интенсивно. Но в действительности все наоборот. Сначала, правда, титан в 60-процентной кислоте разрушается сильнее, но через несколько часов коррозия его почти совершенно прекращается.
Титан беззащитен против галогенов — фтора, иода, брома, хлора. Погруженный в жидкий бром, металл уже через 15 минут вспыхивает и сгорает дотла. То же самое происходит с титаном и в сухом газообразном хлоре с той, правда, разницей, что воспламенение наступает несколько позже — через сутки. Но если в хлоре будет совершенно мизерное количество влаги (хотя бы одна частичка воды на 20000 частей хлора), поведение металла меняется самым разительным образом и из совершенно нестойкого материала он делается абсолютно стойким в этой среде. Что и говорить, действительно, странный, парадоксальный металл!
Металл, который внезапно вспыхивает и горит так яростно, что его погасить почти невозможно, — успешно используют для противопожарных переборок. Металл, который может взорваться, — широко применяют в ракетных и самолетных двигателях.
А стоит ли того большого внимания, которое ему уделяют, такой капризный металл с целой массой недостатков? Он легкий, да, этого не отнимешь, но ведь алюминий гораздо легче, а о магнии и говорить не приходится. Что же касается прочности, то специальные стали гораздо прочнее его. И по стойкости против коррозии он тоже не чемпион: некоторые металлы превосходят его, причем металлы эти не благородные, а (хотя и редкие, и более дорогие) такие же рядовые, как он, — тантал, к примеру, или цирконий.
Все это так. Но, уступая некоторым другим металлам в легкости, прочности, стойкости против коррозии, титан остается по-прежнему уникальным материалом. Ведь он — единственный металл, сочетающий в себе все перечисленные свойства и тем самым как бы работающий за троих. Именно такое сочетание оправдывает все его недостатки, с избытком компенсируя затраты и трудности, связанные с его производством и применением.
Двоякость свойств металла титан
Многих интересует немного загадочный и не до конца изученный титан — металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.
Его открыли двое ученых с разницей в 6 лет — англичанин У. Грегор и немец М. Клапрот. Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией — королевой фей.
Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.
Свойства титана
22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.
Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.
Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него.
Металл характеризуется низкой плотностью и высокой прочностью. Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства. При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким.
Эта особенность обуславливает наличие 2 видов материала: чистого и технического.
- Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
- Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.
Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.
Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность. Вещество не реагирует на элементы, находящиеся в окружающей атмосфере.
Изменение параметров начинается при повышении температуры до +400°С и выше. Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы.
Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.
Титан и конкуренция с другими металлами
Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:
- По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов.
Антикоррозионные характеристики титана значительно превышают показатели других металлов. - При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
- При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
- Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
- Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
- Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.
Какими способами получают титан?
Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:
Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.
Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:
- Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество – тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
- Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап – разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
- Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
- Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры – +1300…+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.
Области применения
Применение титана зависит от степени его очистки от примесей. Наличие даже небольшого количества других химических элементов в составе сплава титана кардинально меняет его физико-механические характеристики.
Титан с некоторым количеством примесей называется техническим. Он имеет высокие показатели коррозийной стойкости, это легкий и очень прочный материал. От этих и других показателей зависит его применение.
- В химической промышленности из титана и его сплавов изготавливают теплообменники, различного диаметра трубы, арматуру, корпуса и детали для насосов различного назначения. Вещество незаменимо в местах, где требуются высокая прочность и стойкость к кислотам.
- На транспорте титан используют для изготовления деталей и агрегатов велосипедов, автомобилей, железнодорожных вагонов и составов. Применение материала уменьшает вес подвижных составов и автомобилей, придает легкость и прочность велосипедным деталям.
- Большое значение титан имеет в военно-морском ведомстве. Из него изготавливают детали и элементы корпусов для подводных лодок, пропеллеры для лодок и вертолетов.
- В строительной промышленности применяется сплав цинк-титан. Он используется как отделочный материал для фасадов и кровель. Этот очень прочный сплав имеет важное свойство: из него можно изготавливать архитектурные детали самой фантастической конфигурации. Он может принимать любую форму.
- В последнее десятилетие титан широко применяют в нефтедобывающей отрасли. Сплавы его применяют при изготовлении оборудования для сверхглубокого бурения. Материал используется для изготовления оборудования для добычи нефти и газа на морских шельфах.
Чистый титан имеет свои области применения. Он нужен там, где необходима стойкость к высоким температурам и при этом должна сохраняться прочность металла.
Его применяют в:
- авиастроении и космической отрасли для изготовления деталей обшивки, корпусов, элементов крепления, шасси;
- медицине для протезирования и изготовления сердечных клапанов и других аппаратов;
- технике для работы в криогенной области (здесь используют свойство титана – при снижении температуры усиливается прочность металла и не утрачивается его пластичность).
В процентном соотношении использование титана для производства различных материалов выглядит так:
- на изготовление краски используется 60 %;
- пластик потребляет 20 %;
- в производстве бумаги используют 13 %;
- машиностроение потребляет 7 % получаемого титана и его сплавов.
Сырье и процесс получения титана дорогостоящие, затраты на его производство компенсируются и окупаются сроком службы изделий из этого вещества, его способностью не менять свой внешний вид за весь период эксплуатации.
Физические характеристики и свойства одного из самых твердых металлов — титана
Титан – элемент 4 группы 4 периода. Переходный металл, проявляет и основные, и кислотные свойства, довольно широко распространен в природе – 10 место. Наиболее интересным для народного хозяйства является сочетание высокой твердости металла и легкости, что делает его незаменимым элементом для авиастроения. Данная статья расскажет вам о маркировке, легирующих и иных свойствах металла титана, даст общую характеристику и интересные факты о нем.
Структура металла
По внешнему виду металл больше всего напоминает сталь, однако механические его качества выше. При этом титан отличается малым весом – молекулярная масса 22. Физические свойства элемента изучены довольно хорошо, однако сильно зависят от чистоты металла, что приводит к существенным отклонениям.
Кроме того, имеет значение его специфические химические свойства. Титан устойчив к щелочам, азотной кислоте, и в то же время бурно взаимодействует с сухими галогенами, а при более высокой температуре – с кислородом и азотом. Хуже того, он начинает поглощать водород еще при комнатной температуре, если имеется активная поверхность. А в расплаве впитывает кислород и водород настолько интенсивно, что расплавление приходится проводить в вакууме.
Еще одна важная особенность, определяющая физические характеристики – существование 2 фаз состояния.
- Низкотемпературная – α-Ti имеет гексагональную плотноупакованную решетку, плотность вещества – 4,55 г/куб. см (при 20 С).
- Высокотемпературная – β-Ti характеризуется объемно-центрированный кубической решеткой, плотность фазы, соответственно, меньше – 4, 32 г/куб. см. (при 900С).
В обычных условиях металл покрывается защитной оксидной пленкой. При ее отсутствии титан представляет большую опасность. Так, титановая пыль может взрываться, температура такой вспышки 400С. Титановая стружка является пожароопасным материалом и хранится в специальной среде.
Далее мы рассмотрим магнитные, механические, химические и физические свойства титана, его сплавов и их применение.
О структуре и свойствах титана рассказывает видео ниже:
Свойства и характеристики титана
Титан на сегодня является самым прочным среди всех существующих технических материалов, поэтому, несмотря на сложность получения и высокие требования по безопасности к производственному процессу, применяется достаточно широко. Физические характеристики элемента довольно необычны, однако очень сильно зависят от чистоты. Так, чистый титан и сплавы активно применяются в ракето- и авиастроении, а технический непригоден, так как из-за примесей теряет прочность при высоких температурах.
Плотность металла
Плотность вещества изменяется в зависимости от температуры и фазы.
- При температурах от 0 до температуры плавления уменьшается от 4,51 до 4,26 г/куб. см, причем во время фазового перехода повышаете на 0,15%, а затем вновь уменьшается.
- Плотность жидкого металла составляет 4,12 г/куб. см, а затем уменьшается с повышением температуры.
Температуры плавления и кипения
Фазовый переход разделяет все свойства металла на качества, которые может проявлять α- и β-фазы. Так, плотность до 883 С, относится к качествам α-фазы, а температуры плавления и кипения – к параметрам β-фазы.
- Температура плавления титана (в градусах) составляет 1668+/-5 С;
- Температура кипения достигает 3227 С.
Далее указана краткая характеристика титана с т.з. механических особенностей.
Горение титана рассмотрено в этом видеоролике:
Механические особенности
Титан примерно в 2 раза прочнее железа и в 6 раз – алюминия, что и делает его столь ценным конструкционным материалом. Показатели относятся к свойствам α-фазы.
- Предел прочности вещества при растяжении составляет 300–450 МПа. Показатель можно увеличить до 2000 МПа, добавив некоторые элементы, а также прибегнув к специальной обработке – закалке и старению.
- Упругость металла относительно невелика, что является существенным недостатком вещества. Модуль упругости при нормальных условиях 110,25 ГПа. Кроме того, титану свойственна анизотропия: упругость по разным направлениям достигает разного значения.
- Твердость вещества по шкале НВ составляет 103. Причем показатель это усредненный. В зависимости от чистоты металла и характера примесей твердость может быть и выше.
- Условный предел текучести составляет 250–380 МПа. Чем выше этот показатель, тем лучше изделия из вещества противостоят нагрузкам и тем больше сопротивляются износу. Показатель титана превосходит показатель алюминия в 18 раз.
По сравнению с другими металлами, имеющими такую же решетку, металл обладает очень приличной пластичностью и ковкостью.
Далее рассмотрена удельная теплоемкость титана.
Теплоемкость
Металл отличается низкой теплопроводностью, поэтому в соответствующих областях – изготовление термоэлектродов, например, не применяется.
- Теплопроводность его составляет 16,76 l , Вт/(м × град). Это меньше чем у железа в 4 раза и в 12 раз меньше, чем у алюминия.
- Зато коэффициент термического расширения у титана ничтожен при нормальной температуре и возрастает при повышении температуры.
- Теплоемкость металла составляет 0,523 кдж/(кг·К).
Электрические характеристики
Как чаще всего и бывает, низкая теплопроводность обеспечивает и низкую электропроводность.
- Удельное электросопротивление металла весьма велико – 42,1·10 -6 ом·см в нормальных условиях. Если считать проводимость серебра равной 100%, то проводимость титана будет равна 3,8%.
- Титан является парамагнитом, то есть, его нельзя намагничивать в поле, как железо, но и выталкиваться из поля, как медь он не будет. Свойство это с понижением температуры линейно уменьшается, но, пройдя минимум, несколько увеличивается. Удельная магнитная восприимчивость составляет 3,2 10 -6 Г -1 . Стоит отметить, что восприимчивость, так же как и упругость образует анизотропию и изменяется в зависимости от направления.
Коррозионная стойкость
В нормальных условиях титан отличается очень высокими антикоррозийными свойствами. На воздухе его покрывает слой оксида титана толщиной в 5–15 мкм, что и обеспечивает отличную химическую инертность. Металл не корродирует в воздухе, морском воздухе, морской воде, влажном хлоре, хлорной воде и многочисленных других технологических растворах и реагентах, что делает материал незаменимым в химической, бумагоделательной, нефтяной промышленности.
При повышении температуры или сильном измельчении металла картина резко меняется. Металл реагирует едва ли не со всеми газами, входящими в состав атмосферы, а в жидком состоянии еще и впитывает их.
Далее рассмотрена токсичность титана.
Безопасность
Титан является одним из самых биологически инертных металлов. В медицине он применяется для изготовления протезов, так как отличается стойкостью к коррозии, легкостью и долговечностью.
Диоксид титана не столь безопасен, хотя используется куда чаще – в косметологической, пищевой промышленности, например. По некоторым данным – UCLA, исследования профессора патологии Роберта Шистла, наночастицы диоксида титана воздействуют на генетический аппарат и могут способствовать развитию рака. Причем через кожный покров вещество не проникает, поэтому применение солнцезащитных средств, в составе которых есть диоксид, опасности не представляет, а вот вещество, попадающее внутрь организма – с пищевыми красителями, биологическими биодобавками, может оказаться опасным.
Титан – уникально прочный, твердый и легкий металл с очень интересными химическими и физическими свойствами. Это сочетание настолько ценно, что даже сложности с выплавкой и очисткой титана производителей не останавливают.
О том, как отличить титан от стали, этот видеосюжет и расскажет:
Температура горения титана
В шестидесятые годы в производстве авиационных двигателей стал применяться титан. Этот металл по удельному весу, механическим качествам и термопрочности имел преимущества по сравнению со сталью. Применение его в двигателях позволяло снизить их удельный вес. Но применение его требовало некоторых технологических и конструкторских новаций: помимо качеств полезных он обладал низкой температурой возгорания; возгоравшись, превращался в страшную разрушительную силу.
Если на самолете возникал пожар топлива, то температура горения достигала немногим более 1000о . Такой пожар давал экипажу время для его обнаружения, и применения мер тушения или покидания самолета. При горении титана температура достигает 3000о . Пламя такого пожара режет конструкцию, как нагретый нож сливочное масло. Разрушение идет столь стремительно, что экипаж оказывается в крайне трудном положении.
В обычных условиях титан возгореться не может, даже достигнув температуры возгорания, для его горения требуется слишком много кислорода. Но в реактивном двигателе, в котором компрессор сделан из титана, температура достаточно высокая, а кислорода хоть отбавляй: через компрессор проходят сотни кубометров воздуха в секунду.
Если из-за уменьшения зазора между лопатками компрессора и корпусом возникнет хотя бы легкое касание, совсем незначительное чирканье, то уж лучше и не говорить!
Горящий титан — это вулкан внутри реактивного двигателя. Вот как это бывало на практике.
На сибирский завод направлена аварийная комиссия. В программе сдаточных испытаний Су-24 предусмотрен «обжим» по скорости. Это значит, на высоте 1000 метров нужно получить скорость 1400 километров в час. Для этого отведена специальная трасса, чтобы сверхзвуковые удары не беспокоили жителей близлежащих деревень.
Во время этого режима экипаж катапультировался. Летчик приземлился нормально. Штурману по самое бедро оторвало ногу, и он погиб от шока и потери крови.
Как и что произошло, летчик понять и рассказать не мог. Жители деревни, находящейся недалеко от трассы, часто видевшие пролет по ней самолетов, в этот раз даже не опознали самолет. Они говорили, что по небу катилась какая-то огненная бочка. В процессе расследования делается «выкладка» деталей, привезенных с места падения. На бетонном полу ангара рисуется контур самолета, и на него кладут обломки в соответствии с их положением на самолете. Члены комиссии с удивлением и недоумением рассматривают детали.
Массивный лонжерон с одного конца — вполне нормального вида, а с другого имел вид мочалки. Вот что может сделать с металлом титановое пламя. Была найдена консоль крыла со следами крови и человеческой плоти. Это она оторвала ногу штурману. Но она находилась позади траектории катапультного кресла. Как такое могло произойти, никто понять не мог.
Еще во время Хрущева боевые самолеты резали электросваркой. Красивые новые машины, лишаясь связи и опоры между своими частями, превращались в груды металлолома.
А если это происходит в воздухе на скорости 1400 километров в час? Никакие ЭВМ, никакое моделирование не способны прогнозировать или объяснить в таком случае движение частей самолета. Вот что такое титановый пожар в полете. В этом случае он был зафиксирован совершенно достоверно.
К сожалению, описанный случай был не единственным.
В ЛИИ летчик Александр Андреевич Муравьев на самолете с тем же двигателем, что и у Су-24, выполнял скоростную площадку. И вдруг. Совершенно немыслимое движение самолета.
Муравьев хорошо знал все мыслимые виды движения, до штопора включительно. Но тут было нечто невероятное: самолет как бы кувыркался через голову. Александр успел благополучно катапультироваться. Титановый пожар был также установлен.
Еще титановый пожар был причиной аварии опытного МиГ-29. К счастью, Валерий Меницкий также смог катапультироваться.
В дальнейшем конструкторы двигателей нашли безопасные способы, как использовать титан, и сейчас он ведет себя в авиадвигателях вполне лояльно.
Смотрите также
Общие принципы тактики перелета на планере
Планеристы больше всего ценят умение достигать на дистанции больших средних скоростей. Повышение средней скорости в конечном счете непосредственно связано и с увеличением дальности перелета. Оставляя .
Астра
Дирижабль «Астра» — 1921 г. Дирижабль «Астра» был куплен у Франции (первоначальное название «Astra-XIII», постр. 1913). Объем оболочки 10.500 куб.м., длина 78 м, диаметр .
Купольная акробатика
Купольная акробатика является одним из самых зрелищных видов парашютного спорта. Первые попытки построить фигуры из куполов энтузиасты делали еще на круглых парашютах. С появлением парашютов-крыльев ф .