Отжиг стальных заготовок применяется для

7 методов и технология отжига стали

Металлургия производит огромное количество марок стали. Для выполнения разных задач часто требуются специфические характеристики металла, которые обеспечить заводы не в состоянии. Тогда на обрабатывающих предприятиях производится доработка сырья до нужной кондиции. Отжиг стали — одна из наиболее частых операций по приданию нужных качеств.

История и технология отжига стали

Отжиг стали предполагает применение переменных температур: нагревание до высоких значений без потери формы и охлаждение в заданном температурном режиме приводит к структурным изменениям кристаллической решетки, сплав получает новые качества, нужные для решения конкретных задач.

Отжиг стали улучшает технологические характеристики металлов. Принято различать 2 разновидности отжига — 1 и 2-го рода.

При первом воздействие выполняется наклепом, который понижает внутренние напряжения рекристаллизацией. Этим устраняются последствия обработки давлением, снижение прочностных характеристик и увеличение пластичности. Изделия приобретают повышенную надежность и долговечность.

Второй род воздействия включает прогревание проката до уровня, превышающего критические точки, в особых режимах охлаждения по сроку и температуре. Итогом становится качественное изменение структурных решеток и получение заданных характеристик материала. Проведение отжига сопряжено с риском пережога. Возникновение необратимых негативных изменений структуры приводит к переплавке проката и изделий.

Точки Чернова

Расчет температурных режимов выполняют, используя открытые в 1868 г. русским ученым Д.К. Черновым критические точки, зависящие от значения температур и %-ого содержание углерода, в которых изменяются фазовые состояния и структурное строение металлов. Открытие Чернова — фундамент создания науки о металлах: впервые установлена связь между режимом обработки, структурным видом и характеристиками сплавов. Применение критических точек дает возможность построения различных режимов термообработки металла. Точки Чернова обозначают литерой А с добавлением индекса, указывающего соответствие точки воздействию:

  • «c» — нагреву, от французского chauffage – нагревание;
  • «r» — охлаждению, refroidissement – на французском языке.

Диаграмма, построенная на точках Чернова:

Сечение «I» на диаграмме соответствует доэвтектоидной стали. Пересечение линии диаграммы, по горизонтали температуры и вертикали, соответствующей %-му содержанию углерода в сплаве, определяет искомые критические значения.

В процессе нагревания сечение «I»проходит следующие критические точки:

  • При температуре 210°С пересекает пунктир, проходящий по линии QP — точка Ас 0, которая отмечает потерю цементитом магнитных свойств.
  • t=727°С на линии PG находится точка Ас 1 превращения перлита в аустенит.
  • t=768°С на линию PG приходится точка Ас 2 потери магнитных свойств — магнитного железо переходит в немагнитное.
  • Последующее повышение t° до пересечения с линией GS показывает переход стального сплава в однофазное аустенитное состояние (перекристаллизация заканчивается. Температура этой точки зависит от состава конкретного металла.

Охлаждение не меняет номеров точек, не вызывает обратной перестройки материала.

Линия «II» выстроена для эвтектоидных сталей.

В промышленности для термообработки проката и изделий используют в печи конструкций:

  • камерные — для заготовок небольшого объема;
  • шахтные — работают на газе и электроэнергии, выполняют различные технологические задания;
  • печи с выдвигающимся полом — обработка крупногабаритного проката и узлов;
  • вакуумные — для быстротекущих сплавов, тугоплавкого металла, титана, меди.

Что даёт отжиг металлов

Отжиг выполняется для придания стали нужных качеств:

  • снятия внутренних напряжений, полученных первичной обработкой металла — проявляется структурный дисбаланс, который можно снять определенным способом термообработки, получив необходимые характеристики сплава для решения конкретных задач;
  • увеличения прочностных и механических характеристик — изделия после отжига долговечнее и прочнее;
  • изменения внутренней структуры — под действием высокой температуры изменяется молекулярная структура металла, становится однородной (гомогенной), что упрощает проведение последующих обработок;
  • улучшения пластичности, уровня сопротивления, вязкости при ударах — улучшение качественных характеристик после отжига снижает затраты на конечную доводку металлоизделий до требуемых параметров.

Способ и режим термообработки назначается по составу сплава.

Виды отжига

Рассмотрим, что означает термин «отжиг металлов». Термическая обработка металла, состоящая из нагрева выше температуры критических точек Чернова и охлаждение на профессиональном языке называется отжигом. Процедура применяется к различным металлам и их сплавам.

На промпредприятиях применяют режимы термообработки:

  • полный, неполный;
  • рекристаллизационный;
  • диффузионный;
  • изотермический;
  • сфероизодизационный;
  • нормализационный.

Полный отжиг стали

Полный обжиг проводится на изделиях из доэвтектоидных сплавов или сталей, содержащих карбон в количестве ≤ 0,8%. Цель проведения операции — измельчение зерна и улучшение качества обработки с применением режущего инструмента, снятие внутренних напряжений материала. Нагрев происходит на 30..50°С выше точки Ас3, затем деталь постепенно остужают, не вынимая из печи. Охлаждаясь, аустенит выделяет мелкозернистые, гомогенные (однородной структуры) ферриты и перлиты (франц. — жемчуг). Температура нагревания выбирается по типу стали и диаграмме состояний, данные зафиксированы в справочных материалах. Продолжительность охлаждения назначают по составу и структуре металла:

  • углеродистые сплавы — 180…200°С/час;
  • низколегированные — 90°С/час;
  • высоко легированные — 50°С/час.

После проведения процедуры полного отжига неоднородная структура углеродистых или доэвтектоидных сплавов становится однородной, что дает податливость дальнейшей обработке.

В отличие от полного, кардинально меняющего структурный состав металла, неполный отжиг изменяет только перлитовую, не затрагивая ферритовую структуру. Перлит , входящий в состав структур сталей, чугуна, других железоуглеродистых материалов, представляет собой цементит и феррит в эвтектоидной смеси. Основная задача неполного отжига — сделать сплавы максимально мягкими и податливыми.

Нагревание производится до t°, превосходящих на 30…50°С точку А1 (параметр перехода перлита в аустенит — начала перекристаллизации), но не достигающих Ас 3 — около 770°С. Затем производится охлаждение до 600°С в установке, со скоростью 60 град/ час, затем процесс продолжается на открытом пространстве.

Рекристаллизационный

Рекристаллизация — снятие структурных изменений, полученных в ходе механических деформаций, вызывающих наклеп. Наклепанный металл имеет меньшую пластичность, отличается жесткостью и неподатливостью.

Нагревание до 650…680°С приводит к равномерному распределению зерен феррита и перлита, вытянутых в направлении деформации, возвращает металлу пластичность.

Диффузионный процесс

Цель диффузионного способа — придание на уровне атомного строения однородности структуре сплава. Диффузионный отжиг иначе называется дендритной ликвацией. Придание гомогенности данным методом уничтожает дендритную ликвацию равномерным распределением атомов примесей по химической структуре слитка.

Процесс отличается использованием t≥1000°С, увеличением выдержки в нагретом состоянии свыше 12 часов, медленным остужением, поэтому он имеет высокую стоимость.

Метод изотермии

Изотермический отжиг используют на сплавах с большим содержанием легирующих и хромистых добавок. Особенностью процесса является нагрев металла на 30…50°С выше точки АС3, быстром остужение и выдерживание при t° ниже критической точки А 1, с дальнейшим естественным охлаждением в воздушной среде.

Преимущество метода изотермии — получение более гомогенного структурного строения деталей, уменьшение срока обработки, так как процесс охлаждения в печи занимает больше времени, чем в естественной среде.

Сфероидизация

При нагревании заэвтектоидных и легированных сплавов до превышения параметра АС 1 на 30…50°С происходит перекристаллизация строения, способствующая образованию перлита в форме правильных сфер. Для ускорения сфероидизации возможно проведение маятникового отжига.

Нормализационный способ

Нормализация производится как промежуточный процесс перед закаливанием и другими видами воздействий для устранения наклепа и удаления внутренних напряжений. Доэвтектоидная сталь нагревается выше точки АС3 на 30…50°С, и постепенно охлаждается в естественной среде. Отличие метода в переохлаждении, из-за которого получают гомогенное мелкозернистое тонкое строение решетки металла.

Преимущество нормализационного способа заключено в снижении срока обработки при высокой производительности. В результате углеродистые сплавы рекомендуют не отжигать, а нормализовать.

Особенности отжига различных сплавов

При назначении способа и режима термообработки важен процент содержания в нем углерода и других примесей. Для точности соблюдения режима рекомендуют использовать две печи: в 1-ой изделие проходит нагрев при t=max , во 2-ой — проходит выдержку, обеспечивающую завершение структурных преобразований металла.
Обработка нержавеющей стали в первой печи происходит с t=1000°С, затем выдержка несколько часов во 2-ой при t=900, завершает охлаждение до t=300° на скорости 50…100 град/ час, окончательное охлаждение производят на открытом пространстве.

Отжиг в домашних условиях

В быту для снижения прочности и упрощения последующей обработки металла возможно выполнить процедуру отжига упрощенным сспособом неполного отжига.
Использование газовой горелки для нагревания не дает возможности проконтролировать температурный режим, поэтому температуру определяют «на глазок», в затененном месте. Изделие последовательно приобретает цвет разжаривания в зависимости от температуры (в градусах):

  • темно-коричневый — t=530…580;
  • коричнево-красный — t=580…650;
  • темно-красный — t=650…730;
  • темно-вишневый -t= 730…770;
  • вишнево-красный — t=770…800;
  • светло-вишневый — t=800…830;
  • светло-красный — t=830…900;
  • оранжевый — t=900…1050;
  • темно-желтый -t= 1050…1150;
  • светло-желтый — t=1150…1250;
  • светло-белый — t=1250…1350.

Изделия следует нагревать на нагретых металлических подставках. Для охлаждения используют различные среды — воду комнатной температуры или нагретую до 50°С, водные растворы, масла, воздух. Ускоряет охлаждение добавка кухонной соли, едкого натра, селитры. Замедляет процесс добавка жидкого мыла, масляной эмульсии, жидкого калиевого или натриевого стекла, известкового молочка.

Охлаждение с высокой скоростью дает твердый закал, приводящий к высоким внутренним напряжениям, возможны трещины, а медленное охлаждение не даст твердости закала. Для получения деталей одинаковой степени закалки следует использовать ванну большой емкости или заменять среду закаливания после каждой операции.

Следует помнить, что режимы высоких температур потенциально пожароопасны, их проводят с соблюдением правил пожарной безопасности в подготовленных помещениях с огнезащитой поверхностей и качественной приточно-вытяжной вентиляцией. При проведении отжига обязательно использовать средства защиты — спецодежду и обувь, рукавицы, головной убор с защитным козырьком.

Читать еще:  Полировка дерева войлоком

Отжиг стали – что происходит со структурой сплава?

В металлургии часто встречаются такие виды обработки, как нормализация и отжиг стали. Что же это такое? Зачем нужно? И каким способом осуществляется? На все эти вопросы ниже приведены подробные ответы.

1 Отжиг металла – это что, и каких видов бывает?

В работе с металлами тяжело добиться идеального состояния прямо с первой выплавки, нужно произвести с деталями еще ряд операций. В этой статье мы разберем, что такое отжиг стали, когда применяют такой метод обработки, какие дефекты возникают во время этой операции и как с ними бороться. По сути это является самым первым этапом термического преобразования сплава. Заключается он в том, чтобы произошел нагрев стали до определенной температуры, далее некоторое время это состояние выдерживается, а затем следует и постепенное охлаждение. В результате такого вида обработки изменяется структура сплава и, соответственно, его свойства.

Существует несколько видов подобной термообработки, а уж какой из них применять, зависит от материала и желаемых свойств. Таким образом, полный отжиг предполагает нагрев до температуры, превышающей критическую не более чем на 20–40 °С. Что же насчет времени выдержки, так оно должны быть таковым, чтобы деталь смогла полностью прогреться, а в материале произошли все структурные превращения. Скорость охлаждения будет различной, в зависимости от типа стали, так для углеродистой она составит 180–200 °С/час, для низколегированной – около 100 °С/час, а для деталей, сделанных из высоколегированных сплавов, падать температура будет приблизительно на 50 °С за один час.

В случае когда не нужны серьезные структурные изменения, применяют неполный отжиг, при этом температура нагрева будет только чуть больше критической. А для того чтобы в результате получился зернистый перлит в структуре высокоуглеродистой стали, необходим специальный вид термической обработки. В этом случае невероятно важным является точное соблюдение температурного режима и скорости охлаждения. Сплав нагревают до 760–780 градусов Цельсия, а затем, немного выдержав, охлаждают до 700 °С и повторяют эту процедуру несколько раз. При изотермическом отжиге нагрев превышает критическую точку не более чем на 50 градусов Цельсия. Добиться химической однородности можно гомогенизацией, осуществляемой при очень высоких температурах, длительной выдержке (10–15 часов) и медленном охлаждении. Для рекристаллизационного отжига необходим нагрев до 680 градусов Цельсия.

Также одним из видов термической обработки металлов является нормализация, ее суть аналогична выше описываемому процессу. Сплав нагревают до заданной температуры, которая превышает критическую на 30–50 °С, выдерживают, а затем постепенно охлаждают.

2 Печи для отжига металла – используемое оборудование сегодня

Так как данный вид обработки предусматривает очень сильный нагрев, то, соответственно, необходимо и специальное оборудование. Так, для термического преобразования проволоки, стержней, канатов, а также легированной, средне- и низкоуглеродистой сталей нашли свое применение печи для отжига металла шахтного типа. Суть процесса заключается в следующем: среда внутри разогревается до тех пор, пока не будет достигнута номинальная температура, после этого же нагрев прекращается и осуществляется загрузка материала специальными подъемниками. Затем крышка печи плотно закрывается, и осуществляется подогрев до заданной отметки уже непосредственно для отжига. Далее следует выдержка и остывание изделия.

Иногда данный процесс включает в себя и подачу эндогаза, она осуществляется при температуре 750 °С и длится до тех пор, пока не закончится вся термообработка. Затем на нагревательные элементы перестает поступать электроэнергия, избыточное давление сбрасывается, открывается затворка, и изделия выгружаются опять-таки с помощью цеховых подъемников.

Одними из последних разработок являются непрерывно нормализующие печи. Они могут быть как с газовым нагревом, так и с косвенным. В последнем случае система подбирается в зависимости от конкретно нужной температуры и назначения. К их преимуществам относится возможность управления мощностью, повышенная безопасность, отличная термоизоляция и экологичность, по крайней мере, количество выбросов вредных веществ в атмосферу в разы меньше, чем при использовании устаревшего оборудования.

3 Какие процессы происходят в металле при отжиге?

Отжиг металла – это нагрев до весьма значительных температур, зачастую превышающих даже критическую, что не может не отразиться на его структуре. Однако, так как и режим при разных видах термообработки различен, да и изначально структура сталей неодинакова, то и изменения в них будут происходить непохожие в зависимости от этих факторов.

Таким образом, углеродистые доэвтектоидные стали, подвергшиеся полному отжигу, в результате получат перлитную структуру с включением зерен феррита. Низко- и среднеуглеродистые стали с содержанием углерода, не превышающим 0,45%, в основном имеют неоднородную структуру, после же обработки их зерна измельчаются и становятся более однородными.

При неполном отжиге изменению подвергается структура перлита, что же насчет феррита, так он неизменен. Таким образом, снимаются внутренние напряжения в материале, и он становится более мягким. При гомогенизации происходит распределение атомов (диффузия), при этом довольно часто следствием может служить укрупнение зерен. После нормализации структура стали становится мелкозернистой и более однородной.

4 Обязательно ли отжигать сталь?

Очень часто бывают случаи, когда последствиями какой-либо обработки является неустойчивое состояние материала. Например, результатом холодной пластической деформации может послужить искажение кристаллической решетки. Диффузионные процессы, которые должны пройти при затвердевании, не успевают произойти, что способствуют неоднородности сплава. Быстрое охлаждение, а также неравномерное распределение усилий приводит к неравномерному распространению упругой деформации. Без теплового движения атомов неустойчивое состояние стали будет сохраняться надолго. Таким образом, для того чтобы снять напряжение, свести искажение кристаллической решетки до минимума, а также осуществить диффузию и рекристаллизацию, необходим нагрев.

Кроме того, в случае нагрева выше температуры фазового превращения и дальнейшего медленного охлаждения произойдет структурированное равновесие сплава. Таким образом, с помощь отжига добиваются повышения уровня механических свойств, снятия внутренних напряжений, материал лучше поддается резке специальным инструментом, становится более мягким, а также данный этап считается подготовительным для дальнейшей термообработки.

5 Какие дефекты может создать отжиг стали?

При этом очень важно знать и о вероятных дефектах. Среди них окисление – возникновение на поверхности окислов железа и окалины. Связано это с выгоранием углерода в поверхностных слоях. Этот брак может привести к искажению геометрии деталей, снижению прочности, возникновению трещин, а также короблению. Дабы избежать данных дефектов, необходимо использовать защитные газы, чтобы снизить содержание кислорода в рабочей среде до минимума.

Еще виды дефектов, которые могут встретиться при отжиге, это перегрев и пережог. Возникают они при воздействии чрезвычайно высоких температур и длительной выдержке. В первом случае происходит укрупнение зерна, что приводит к появлению горячих трещин, снижению вязкости и прочности сплава. Бороться с этим можно только лишь повторной нормализацией. Второй же дефект характеризуется окислением самих зерен, а значит, и оплавлением поверхности. Исправить такой брак невозможно, поэтому деталь просто переплавляют.

Отжиг — вид термической обработки металлов и сплавов, заключающийся в нагреве до определённой температуры, выдержке и последующем, обычно медленном, охлаждении. При отжиге осуществляются процессы возврата (отдыха металлов), рекристаллизации и гомогенизации. Цели отжига — снижение твёрдости для повышения обрабатываемости, улучшение структуры и достижение большей однородности металла, снятие внутренних напряжений. [1]

Содержание

Виды отжига

По классификации А. А. Бочвара различают 2 вида отжига:

  1. Отжиг 1-го рода — без фазовой перекристаллизации — применяется для приведения металла в более равновесное структурное состояние: снимается наклёп, понижается твёрдость, возрастают пластичность и ударная вязкость, снимаются внутренние напряжения (в связи с процессами отдыха и рекристаллизации).
  2. Отжиг 2-го рода осуществляется с фазовой перекристаллизацией: сталь нагревается до температуры выше критических точек, затем следует выдержка различной продолжительности и последующее сравнительно медленное охлаждение.

Полный и неполный отжиг

  • Полный отжиг заключается в нагреве стали на 30—50 °C выше верхней критической точки для полного превращения структуры стали в аустенит и последующем медленном охлаждении до 500—600 °C для образования феррита и перлита. Скорость охлаждения для углеродистых сталей около 50—100 °C/ч. Если охлаждение ведётся на воздухе, происходит нормализация.
  • Неполный отжиг заключается в нагреве до температур между нижней и верхней критическими точками и последующем медленном охлаждении.

Изотермический отжиг

Для легированных сталей применяют изотермический отжиг, состоящий в нагреве выше верхней критической точки А3 область избыточного аустенита, выдержке, охлаждении до температуры ниже нижней критической точки А1, выдержке, достаточной для полного превращения аустенита в перлит, и охлаждении до комнатной температуры.

Диффузионный (Гомогенизационный) отжиг

Диффузионный отжиг состоит в нагреве до температур, значительно превосходящих критические точки, и продолжительной выдержке; используется для литого материала, обеспечивает получение равновесной структуры.. Диффузионный отжиг приводит к достижению более однородных свойств по объёму изделия и особенно улучшению механических свойств в поперечном (по отношению к прокатке) направлении. В необходимых случаях для предотвращения обезуглероживания стали производят отжиг в защитных атмосферах. При диффузионном отжиге идут следующие процессы:

  1. выравнивание химического состава до равновесного;
  2. растворение избыточных фаз;
  3. выделение фаз из пересыщенного твердого раствора — особый случай — гетерогенизация во время гомогенизации, наблюдается в алюминиевых сплавах, содержащих хром, цирконий и скандий;
  4. рост зерна;
  5. образование и рост пор.

Методы выполнения диффузионного отжига

При начале диффузионного отжига сначала растворяются самые легкоплавкие эвтектики (тройные, четверные), потом нагревают до двойной эвтектики, а затем нагревают под температуру метастабильного солидуса. Основная задача — сократить время обработки. Для этого нужно нагреть на возможно более высокую температуру. При этом материал не должен испытывать:

  1. перегрева — чрезмерного роста зерен,
  2. пережога — окисления границ зёрен.
Читать еще:  Делительная головка своими руками

Высокотемпературный диффузионный отжиг

Нагревать до температуры между температурами метастабильного и стабильного солидуса, заранее обрекая материал на частичное расплавление. Если объем легкоплавких фаз менее 1 %, то эта жидкость позднее рассосется, и влияния на свойства не окажет.

Температура нагрева зависит от температуры плавления Тн = 0.7-0.8 Тпл

Рекристаллизационный отжиг

Рекристаллизационный отжиг — нагрев до температуры на 100-200 °C выше температуры рекристаллизации ,выдержка и последующее охлаждение. Вследствие процесса рекристаллизации происходит снятие наклепа, и свойства металла соответствуют равновесному состоянию.

Синеломкость

Синеломкость — снижение пластичности стали при одновременном повышении прочности, наблюдаемое при деформации в интервале температур, вызывающих синий цвет побежалости (200—300 °C).

  1. Печи для термической обработки стали. Архивировано из первоисточника 18 февраля 2012.Проверено 10 июля 2011.

Wikimedia Foundation . 2010 .

Смотреть что такое «Отжиг» в других словарях:

отжиг — отжиг, а … Русский орфографический словарь

ОТЖИГ — ОТЖИГ, медленный нагрев с последующим охлаждением металла, сплава или стекла для устранения внутренних напряжений и уплотнения пустот, смещений в кристаллической решетке, которые могли возникнуть при механической обработке, например, прокатке или … Научно-технический энциклопедический словарь

отжиг — отжигание; отпуск Словарь русских синонимов. отжиг сущ., кол во синонимов: 8 • встречный огонь (1) • … Словарь синонимов

ОТЖИГ — термическая обработка материалов (напр., металлов, полупроводников, стекол), заключающаяся в нагреве до определенной температуры, выдержке и медленном охлаждении. Цель улучшение структуры и обрабатываемости, снятие внутренних напряжений и т. д … Большой Энциклопедический словарь

ОТЖИГ — ОТЖИГ, отжига, мн. нет, муж. (тех.). 1. Термическая обработка металла с целью возвратить ему качества, утраченные в каком нибудь процессе обработки. 2. Постепенное охлаждение стеклянных изделий в особых печах для придания им крепости. Толковый… … Толковый словарь Ушакова

ОТЖИГ — ОТЖИГ, а, муж. (спец.). Термическая обработка металла, сплава для придания ему нужных качеств. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

ОТЖИГ — процесс термической обработки металла, состоящий в нагреве его до критической точки или несколько выше и последующем медленном охлаждении в горячем песке или шлаке в муфельных (без доступа воздуха) печах. О. производится в целях: 1) устранения… … Технический железнодорожный словарь

отжиг — Процесс восстановления (ренатурация) двухцепочечной молекулы ДНК из одиночных полинуклеотидных цепей одного вида путем постепенного охлаждения. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.]… … Справочник технического переводчика

Отжиг — – тепловая обработка плавленолитого огнеупорного изделия для предотвращения разрушения отливки в процессе охлаждения. [ГОСТ Р 52918 2008] Рубрика термина: Технологии керамики Рубрики энциклопедии: Абразивное оборудование, Абразивы,… … Энциклопедия терминов, определений и пояснений строительных материалов

ОТЖИГ — термическая обработка материалов, напр. металлов, стёкол, полупроводников, заключающаяся в нагреве до определённой температуры, выдержке и медленном охлаждении с целью улучшения внутренней структуры материала, обрабатываемости, уменьшения… … Большая политехническая энциклопедия

Отжиг — Annealing Отжиг. Термообработка, состоящая из нагрева до необходимой температуры превращения с последующим медленным охлаждением. Используется прежде всего для снятия напряжений в металлах, а также и одновременного изменения других свойств или… … Словарь металлургических терминов

Отжиг сталей. Влияние на свойства и применение.

Термическая обработка металлов.

Термической обработкой называют технологический процесс, состоящий из совокупности операций нагрева, выдержки и охлаждения изделий из металлов и сплавов, целью которого является изменение их структуры и свойств в заданном направлении.

Теория термической обработки рассматривает и объясняет изменение строения и свойств металлов и сплавов при тепловом воздействии в сочетании с химическим, деформационным, магнитным и другими воздействиями.

Термическая обработка является одним из наиболее распространенных в современной технике способов получения заданных свойств металлов и сплавов. Термическая обработка применяется либо в качестве промежуточной операции для улучшения обрабатываемости давлением, резанием и др., либо как окончательная операция для придания металлу или сплаву такого комплекса механических , физических и химических свойств , который смог бы обеспечить заданные эксплуатационные характеристики изделия.

Так как основными факторами любого вида термической обработки являются температура и время, то любой процесс термической обработки можно описать графиком, показывающим изменение температуры во времени (рис.1). Постоянная скорость нагрева или охлаждения изображается на графике прямой линией с определенным углом наклона, при этом угол наклона характеризует скорость нагрева или охлаждения ( α, β). Общая длительность термической обработки металла складывается из времени τ1 собственно нагрева до заданной температуры, времени выдержки при этой температуре τ1 – τ2 и времени охлаждения до комнатной температуры τ2 — τ3.

Рис.1. График термической обработки сплавов.

В результате термической обработки в сплавах происходят структурные изменения. После термообработки металлы и сплавы могут находиться в равновесном (стабильном) и неравновесном (метастабильном) состоянии. При охлаждении деталей вместе с печью в них практически полностью проходят процессы вторичной кристаллизации и, связанные с ними, диффузионные превращения в металле или сплаве. В результате металл оказывается в состоянии, близком к равновесному. При охлаждении на воздухе в металле происходят превращения, близкие к равновесным. При быстром охлаждении (масло, вода и др.) в металле не успевают проходить диффузионные процессы и связанные сними превращения, поэтому он оказывается в неравновесном состоянии.

Все виды термической обработки подразделяются на три группы: собственно термическую, термомеханическую и химико-термическую. Собственно термическая обработка (ТО) предусматривает только термическое воздействие на металл или сплав; термомеханическая (ТМО) –сочетание термического воздействия и пластической деформации; химико-термическая (ХТО) – сочетание термического и химического воздействия.

Собственно термическая обработка включает отжиг I рода, отжиг II рода, закалку, отпуск и старение.

Отжигом называется термическая обработка, в процессе которой производится нагрев деталей из стали до требуемой температуры с последующей выдержкой и медленным охлаждением в печи для получения однородной, равновесной, менее твердой структуры, свободной от остаточных напряжений.

На практике используют два принципиально различных вида отжига: отжиг I рода и отжиг II рода.

Отжиг I рода в зависимости от исходного состояния стали и температуры нагрева может быть: гомогенизационным, рекристаллизационным и отжигом для снятия внутренних напряжений.

Особенностью всех разновидностей отжига I рода является то, что все они не связаны с фазовыми превращениями в твердом состоянии стали и протекают независимо от того, идут при этом фазовые превращения или нет.

Гомогенизационный (диффузионный) отжиг применяется для устранения химической неоднородности, возникающей при кристаллизации металла. Этому отжигу подвергают слитки и отливки из легированной стали для устранения дендритной или внутрикристаллитной ликвации, которая повышает склонность стали при обработке давлением к трещинообразованию, анизотропии свойств и возникновению таких дефектов, как шиферность (слоистый излом) и флокены (тонкие внутренние трещины, наблюдаемые в изломе в виде белых пятен).

Нагрев при диффузионном отжиге проводят до максимально высоких температур, так как при этом наиболее интенсивно проходят диффузионные процессы, необходимые для выравнивания состава стали по всему объему кристаллита. Обычно для легированных сталей температуру гомогенизационного отжига выбирают в интервале 1050-1250 ºC .

Диффузионные процессы наиболее интенсивно протекают в начале выдержки и их интенсивность снижается с течением времени выдержки, поэтому применение длительных выдержек нецелесообразно (обычно 15-20 часов). После выдержки детали охлаждают

вместе с печью до 800-820 ºC, а затем проводится охлаждение на воздухе. В результате диффузионного отжига получается крупное зерно, которое устраняется при последующей термической обработке.

Рекристаллизационный отжиг заключается в нагреве холоднодеформируемой стали

выше температуры начала кристаллизации, выдержке при этой температуре и последующем медленном охлаждении.

Рекристаллизационный отжиг применяют для устранения наклепа после холодной пластической деформации. Главным процессом при проведении этого отжига является рекристаллизация металла. Рекристаллизационный отжиг используют как промежуточный процесс между операциями холодного деформирования (для снятия наклепа) и как окончательную термическую обработку для придания изделию требуемых свойств.

Для углеродистых сталей (0,08-0,2 %С), подвергнутых прокатке, штамповке, волочению, применяют температуру отжига в интервале 680-700 ºC. Для высокоуглеродистой легированной хромистой и хромоникелевой стали применяют отжиг при температуре

680-740 ºC в течение 0,5-1,5 часов.

Отжиг для снятия внутренних напряжений проводят с целью уменьшения остаточных напряжений, образовавшихся в металле при ковке, литье, сварке, и способных вызвать коробление и разрушение детали. Главным процессом, проходящим при отжиге для снятия внутренних напряжений, является релаксация остаточных напряжений. Этот процесс

является следствием того, что при определенных температурах предел текучести стали становится ниже остаточных напряжений и происходит пластическая деформация, в результате которой остаточные напряжения уменьшаются до значений предела текучести.

На практике отжиг стальных изделий для снятия напряжений проводят в температурном интервале 160-700 ºC с последующим медленным охлаждением.

Отжиг II рода – термическая обработка, заключающая в нагреве стали до температур выше критических точек Ас1 или Ас3 , выдержке с последующим медленным охлаждением. Отжиг II рода основан на прохождении фазовых превращений в твердом состоянии. При фазовой перекристаллизации измельчается зерно и устраняется строчечность и другие неблагоприятные структуры стали. В большинстве случаев отжиг II рода является подготовительной термической обработкой – в процессе отжига снижается твердость и прочность, что облегчает обработку резанием сталей. Неполный отжиг инструменталь-

ных сталей предшествует окончательной термической обработке.

Существуют следующие разновидности отжига стали: полный, неполный и

изотермический. Полный отжиг применяется для доэвтектоидных сталей и состоит в нагреве стали на 30-50ºC выше точки Ас3, выдержки при этой температуре до полной перекристаллизации металла

и медленном охлаждении. При таком отжиге образуется мелкое аустенитное зерно, из которого при охлаждении формируется равномерная мелкозернистая ферритно-перлит-

Читать еще:  Сваривание металла электросваркой

ная структура. Поэтому полный отжиг обычно применяют с целью измельчения зерна, а следовательно повышения ударной вязкости и пластичности.

Неполный отжиг отличается от полного тем, что сталь нагревается до более низкой температуры (выше Ас1 но ниже Ас3). Этот вид отжига для доэвтектоидных сталей применяется ограниченно и в основном для улучшения их обрабатываемости резанием, так как в результате частичной перекристаллизации стали избыточный феррит лишь частично превращается в аустенит.

Неполный отжиг широко применяется для заэвтетоидных углеродистых и легированных сталей. При неполном отжиге проводится нагрев до температур немного выше ( на 10-30 ºC) точки точек Ас1 , что приводит к практически полной перекристаллизации стали и получению зернистой (сфероидальной) формы перлита вместо обычной пластинчатой. Поэтому такой отжиг называется сфероидизирующим. После отжига на зернистый перлит эвтектоидные и заэвтектоидные стали обладают наилучшей обрабатываемостью резанием.легированных сталей.

Изотермический отжиг применяют для улучшения обрабатываемости. Он состоит в нагреве на 30-50 ºC выше Ас3 (как и при полном отжиге) и сравнительно быстром охлаждении до температуры ниже Ас1 (обычно 660-680 ºC), изотермической выдержке при этой температуре для получения равновесной перлитной структуры и последующем охлаждении на воздухе (рис.3).

Рис. 10.3 Обозначение критических точек стали.

Изотермический отжиг обеспечивает получение более однородной ферритно-перлитной структуры стали. Изотермическому отжигу подвергают пружинную проволоку из стали, содержащей 0,65-0,9% С, перед холодным волочением, а также поковки (штамповки) и сортовой прокат небольших размеров из легированной стали.

Если при проведении отжига охлаждение после нагрева и выдержки проводится на воздухе, то такой процесс называется нормализационным отжигом или нормализацией.

При нормализации сталь нагревают до температур на 30-50 ºC выше точек точек А3 и А CM и охлаждают на воздухе. Ускоренное по сравнению с обычным отжигом охлаждение обусловливает несколько большее переохлаждение аустенита. Поэтому при нормализации получается более тонкое строение эвтектоида и более мелкое эвтектоидное зерно. В результате прочность стали после нормализации становится больше прочности после отжига.

Нормализацию широко применяют вместо смягчающего отжига для малоуглеродистых сталей (до 0,3 %С), но она не может применяться для смягчения высокоуглеродистых сталей, которые весьма ощутимо упрочняются при охлаждении на воздухе из-за значительного переохлаждения аустенита. В заэвтектоидных сталях нормализация позволяет устранить грубую сетку вторичного цементита за счет того, что растворившийся при нагреве выше АCm цементит при последующем ускоренном охлаждении стали не успевает вновь образовать грубую сетку. После нормализации проводят неполный отжиг с целью измельчения структуры.

Отжиг и нормализация углеродистой стали. Отжиг стали

2.2. Отжиг стали

Режим термической обработки включает в себя следующие составляющие: скорость нагрева, температуру нагрева, продолжительность выдержки, скорость охлаждения.

Скорость нагрева выбирается в зависимости от теплопроводности стали (химического состава) и формы детали. Если теплопроводность стали высокая, то и скорость нагрева может быть больше. При этом следует иметь в виду, что у большинства легированных сталей теплопроводность ниже, чем у углеродистых, и быстрый нагрев может привести в них к возникновению напряжений и трещин. Заготовки или детали простой формы по той же причине можно греть быстрее, чем сложной.

Температура нагрева зависит от состава стали и вида термообработки. Для углеродистых сталей она может быть определенна по диаграмме Fe3C, для легированных приводится в справочниках. Отметим, что для каждой стали при определенном виде термообработки эта температура величина постоянная.

Продолжительность выдержки зависит главным образом от размеров деталей и условий нагрева. При нагреве деталей в газовых или электрических печах выдержка обычно назначается из расчета 1,5-2 мин. на 1мм максимальной толщины детали (при условии что детали в печи не соприкасаются друг с другом). При нагреве в жидких средах (например, в соляных ваннах), где условия теплообмена очень высоки, продолжительность выдержки берется

10-15 сек. на 1мм толщины.

Скорость охлаждения обычно задают охлаждающей средой (охлаждение в печи, на воздухе, в масле, в воде, в специальных средах).

Режим термической обработки удобно задавать графиком в координатах температура-время (см.рис.9).

2.2. Отжиг стали

Отжигом называют вид термической обработки состоящий в нагреве стали до определенной температуры, выдержке и медленном охлаждении.

В процессе отливки, прокатки или ковки стальные заготовки охлаждаются неравномерно, что приводит к неоднородности структуры и свойств, возникновению внутренних напряжений. При затвердевании отливок кроме того возможно появление внутри кристаллитной ликвации (химической неоднородности по сечению зерна). В сварных соединениях также наблюдаются неоднородности структуры, свойств и внутренние напряжения.

Для устранения различного рода структурных неоднородностей проводят отжиг.

Различают несколько видов отжига различающихся по технологии выполнения и цели. Для измельчения зерна перегретой стали, снижения твердости и улучшения обрабатываемости резанием применяют полный, неполный, изотермический отжиги и отжиг на зернистый перлит. Для уменьшения внутреннего напряжения, снижения твердости, повышения пластичности и изменения формы зерен холоднодеформированного металла применяют рекристаллизационный отжиг. Для устранения внутрикристаллитной ликвации в легированных сталях — высокотемпературный диффузионный отжиг.

Температурные интервалы основных видов отжига для углеродистых сталей представлены на рис.10.

Полный отжиг проводится для доэвтектоидных и эвтектоидных сталей. Температура нагрева на 30-500 выше А3, т.е. структуру полностью переводят в аустенитное состояние. После выдержки сталь медленно охлаждают в печи. Скорость охлаждения углеродистых сталей 100-150 0/час, легированных — 30-40 0/час. Структура стали после полного отжига получается феррито-перлитная, т.е. такая, как по диаграмме Fe-C.

Неполный отжиг проводят практически для инструментальных заэвтектоидных сталей, только в том случае, если в структуре нет цементита по границам зерен (сетка цементита). Если есть сетка цементита, то для ее устранения применяют нормализацию, что будет рассмотрено ниже. Температура нагрева на 30-500 выше А1 (750-7800). При нагреве структура будет состоять из аустенита и цементита, после медленного охлаждения из перлита и цементита.

Изотермический отжиг проводят с той же целью, что и полный, но время на его проведение требуется меньше (см.рис.11). После нагрева до температуры на 30-500 выше А1, выдержке для выравнивания температуры по сечению, сталь подстуживают немного ниже А1 (650-7000) и выдерживают при этой температуре до полного распада аустенита на феррит и перлит, дальнейшее охлаждение с любой скоростью.

В отличие от других видов отжига здесь распад аустенита проходит не при непрерывном охлаждении, а в изотермических условиях (при постоянной температуре). Проводить такой отжиг проще, т.к. контролировать температуру легче, чем скорость охлаждения.

Изотермический отжиг обычно применяют для легированных сталей обладающих высокой устойчивостью аустенита (кривая изотермического распада сильно сдвинута вправо). Такой отжиг можно применять только для мелких заготовок, у которых температура по сечению выравнивается сравнительно быстро.

Отжиг на зернистый перлит проводят с целью улучшить обрабатываемость резанием за счет снижения твердости при переводе пластинчатого перлита в зернистый. Такой отжиг применяют для эвтектоидной и заэвтектоидных сталей (при отсутствии сетки цементита).

Отжиг проводят по одному из следующих режимов:

1. Нагрев на 20-300 выше А1, выдержка 3-5 часов, медленное охлаждение

2. Нагрев до тех же температур с небольшой выдержкой, охлаждение до 6000, снова нагрев до 740-7500 и снова охлаждение до 6000. Такие циклы нагрева и подстуживания повторяют 2-4 раза, т.е. проводят как бы покачивание температуры стали около А1. Поэтому такой отжиг называют еще маятником отжигом. Графически режим маятникового отжига представлен на рис.12. Общая продолжительность по второму режиму меньше, чем по первому

Почему при таком отжиге цементит изменяет форму от пластинки до сферы? Представим себе пластинку цементита в аустените. По краям этой пластинки радиус кривизны мал (0,5 толщины пластины), а по плоскости бесконечно большой. Там, где радиус кривизны мал, углерод легче переходит из цементита в аустенит, т.е. концентрация углерода у краев пластины будет повышаться. За счет диффузии концентрация углерода в аустените выравнивается атомы углерода будут переходить от края пластины к плоской части и там выделяться в виде цементита. Процесс идет пока вся пластина не превратится в сферу.

Отжиг рекристаллизационный применяют для снижения прочности, твердости, повышения пластичности и устранения вытянутости зерен после холодной пластической деформации (например, промежуточные отжиги при волочении проволоки). Такому отжигу подвергают малоуглеродистые стали, так как высокоуглеродистые стали в холодном состоянии деформируются плохо и их такой обработке практически не подвергают.

Нагрев при этом отжиге проводят ниже температуры А1 до 600-7000 с последующим охлаждением в печи или на воздухе. При этом временное сопротивление разрыву (высокое после деформации) снижается, а пластичность растет. Схема изменения формы зерен в процессе холодной пластической деформации и последующего рекристаллизационного отжига приведена на рис.13.

Нормализация заключается в нагреве стали на 30-500 выше критических температур А3 и Асм(см.рис.3) с последующим охлаждением на воздухе.

Цель нормализации доэвтектоидных конструкционных сталей несколько повысить прочность (по сравнению с прочностью после отжига) за счет измельчения структурных составляющих (феррита и перлита).

Цель нормализации заэвтектоидных инструментальных сталей — устранить цементитную сетку по границам перлитных зерен и тем самым предотвратить повышенную хрупкость стали при последующей закалке. Структура таких сталей после охлаждения на воздухе из аустенитной области (выше АC3) получается сорбит (см. рис. 14).

2.4. Закалка стали

Закалка — вид термической обработки состоящий в нагреве стали до определенных температур (доэвтектоидных на 30-400 выше А3, заэвтектоидных на 30-400выше А1), выдержке и быстром охлаждении, со скоростью более верхней критической.

Цель закалки — повысить твердость, прочность, износоустойчивость.

Скорость охлаждения при закалке обычно задают охлаждающей средой (вода, масло, специальные среды). Верхняя критическая скорость закалки сильно зависит от содержания углерода (см.рис.1.5.) и легирующих элементов. Малоуглеродистые стали (

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]