Верхний нагреватель для паяльной станции своими руками

Инфракрасная паяльная станция своими руками

Уже давно я задумался над тем, паяльную станцию своими руками и чинить на ней свои старые видеокарты, приставки и ноутбуки. Для нагрева можно использовать старую галогеновую грелку, ножку от старой настольной лампы можно использовать для удержания и перемещения верхнего нагревателя, платы будут лежать на алюминиевых поручнях, спираль от душа будет держать термопары, а плата Ардуино будет следить за температурой.

Сперва разберемся с тем, что такое паяльная станция. Современные чипы на интегральных схемах (ЦПУ, ГПУ и т.д.) не имеют ножек, зато имеют массив шариков (BGA, Ball grid array). Для того чтобы припаятьотпаять такой чип, нужно иметь устройство, которое нагреет всю IC до температуры в 220 градусов и при этом не расплавит плату, а также не подвергнет IC термическому шоку. Именно поэтому нам нужен контроллер температуры. Такие аппараты стоят в диапазоне $400-1200. Это проект должен уложиться примерно в $130. Про BGA и паяльные станции вы можете почитать на Википедии, а мы начнём работать!

    Четырёхламповый галогеновый нагреватель

1800w (в качестве нижнего подогрева)

  • 450w керамический ИК (верхний нагреватель)
  • Алюминиевые рейки для занавесок
  • Спиральный кабель для душа
  • Прочная толстая проволока
  • Ножка от настольной лампы
  • Плата Ардуино ATmega2560
  • 2 платы SSR 25-DA2x Adafruit MAX31855K (или сделайте сами, как сделал я)
  • 2 термопары типа K
  • Блок питания постоянного тока 220 на 5v, 0.5A
  • Буквенный модуль LCD 2004
  • 5v пищалка
  • Шаг 1: Нижний нагреватель: отражатель, лампы, корпус

    Найдите галогеновый нагреватель, откройте его и выньте отражатель и 4 лампы. Будьте аккуратны, не сломайте лампы. Здесь вы можете приложить воображение и создать свой корпус, который будет держать лампы и отражатель. Например, вы можете взять старый корпус ПК и поместить лампы, отражатель и провода внутрь него. Я использовал металлические листы толщиной 1 мм и сделал из них корпуса для нижнего и верхнего нагревателя, а также корпус для контроллера Ардуино. Как я и сказал прежде — вы можете быть креативными и придумать для корпуса что-то своё.

    Используемый мною нагреватель был на 1800W (4 лампы на 450w параллельно). Используйте провода из нагревателя и параллельно соедините лампы. Вы можете встроить штекер для переменного тока, как сделал это я, или соединить кабель напрямую от нижнего нагревателя к контроллеру.

    Шаг 2: Нижний нагреватель: система крепления плат

    После создания корпуса нижнего нагревателя, измерьте бОльшую длину его окна и отрежьте два куска алюминиевой рейки такой же длины. Вам также нужно будет отрезать еще 6 кусков, каждая размером в половину от меньшей стороны окна нагревателя. Просверлите отверстия по двум концам больших кусков реек, а также на одном конце каждой из 6 небольших реек и на длинной части окна. Перед тем, как прикручивать части к корпусу, нужно создать механизм крепления на гайках, по типу такого, который я сделал на фотографиях. Это нужно для того, чтобы меньшие рейки могли скользить по бОльшим рейкам.

    После того, как вы проденете гайки в рейки и скрутите всё вместе, используйте шуруповёрт для перемещения и закрепления шурупов, чтобы система крепления подходила под размер и форму вашей платы.

    Шаг 3: Нижний нагреватель: держатели термопары

    Для изготовления держателей термопары, замерьте диагональ окна нижнего нагревателя и отрежьте два куска спирального кабеля для душа такой же длины. Раскрутите жесткий провод и отрежьте два куска, каждый на 6 см длиннее, чем спиральный кабель от душа. Пропустите жесткий провод и термопару через спиральный кабель и загните оба конца провода так, как это сделал я на картинках. Оставьте один конец длиннее другого для того, чтобы закрутить его одним из винтов рейки.

    Шаг 4: Верхний нагреватель: керамическая пластина

    Для изготовления верхнего нагревателя я использовал керамический инфракрасный нагреватель на 450W. Вы можете найти такие на Алиэкспресс. Хитрость заключается в том, что нужно создать для нагревателя хороший кейс с правильным током воздуха. Далее приступаем к держателю нагревателя.

    Шаг 5: Верхний нагреватель: держатель

    Найдите старую настольную лампу на ножке и разберите её. Для того чтобы правильно разрезать лампу, нужно точно всё рассчитать, так как верхний инфракрасный нагреватель должен достигать всех углов нижнего нагревателя. Итак, сначала прикрепите корпус верхнего нагревателя, сделайте разрез по оси X, произведите правильные расчёты и, наконец, сделайте разрез по оси Z.

    Шаг 6: ПИД-регулятор на Ардуино

    Найдите правильные материалы и создайте прочный и безопасный кейс для Ардуино и других принадлежностей.

    Можно просто отрезать и с прикрепить провода, соединяющие контроллер (верхнее/нижнее питание, контролер питания, термопары), используя паяльник или раздобыть коннекторы и сделать всё аккуратно. Я не знал точно, сколько тепла будет излучать SSR, поэтому добавил на корпус вентилятор. Будете вы устанавливать вентилятор, или нет, но вам обязательно нужно нанести на SSR термопасту. Код прост и из него понятно, как соединить кнопки, SSR, экран и термопары, так что соединить все вместе будет просто. Как управлять устройством: для значений P, I и D нет автонастройки, так что эти значения нужно будет вбить вручную в зависимости от ваших настроек. Есть 4 профиля, в каждом из них можно установить количество шагов, значения Ramp (C/s), dwel(время ожидания между шагами), порог нижнего нагревателя, целевую температуру для каждого шага и значения P,I,D для верхнего и нижнего нагревателей. Если вы, например, выставите 3 шага, 80, 180 и 230 градусов с порогом нижнего нагревателя 180, то ваша плата будет прогрета снизу только до 180 градусов, дальше температура снизу будет держаться на 180 градусах, а верхний нагреватель разогреется до 230 градусов. Код до сих пор нуждается во множестве улучшений, но из него вы можете понять, как все должно работать. Это руководство описано не в деталях, ведь в нём присутствует множество самодельных элементов, и каждая сборка будет отличаться от других. Я надеюсь, что вы вдохновитесь этой инструкцией и сделаете по ней свою ИК паяльную станцию.

    Код на Дропбоксе: Ссылка

    Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

    Инфракрасная паяльная станция

    Ремонт ноутбуков и видеокарт, реболлинг (демонтаж и монтаж чипа с восстановлением шариков припоя) без инфракрасной паяльной станции, как правило, не обходится. Сервисные центры за такую работу либо не берутся, либо взимают довольно большие деньги за такой ремонт. Между тем подобные поломки – явление довольно частое.

    ИК паяльная станция

    ИК станция заводского исполнения – устройство довольно дорогое, поэтому экономичнее сделать ее своими руками. Инфракрасную паяльную станцию можно сделать за один, максимум два дня, предварительно заказав через интернет и получив по почте комплектующие детали к ней.

    Немного теории

    При нормальной температуре пик электромагнитного излучения происходит в инфракрасной области. Вещи, которые горят, излучают как более интенсивное, так и более энергичное (более короткое) инфракрасное излучение. Когда становится очень жарко, они начинают светиться красным. Чем они горячее становятся, тем приобретают больше оранжевого и желтого цветов, затем синего.

    Многие органические молекулы интенсивно поглощают инфракрасное излучение, это заставляет объект нагреваться. Тепло – это кинетическая энергия поступательного движения атомов и молекул. Излучаемый атомом свет имеет длину волны. В итоге нагретое тело тоже излучает свет, и чем сильнее нагрето тело, тем короче волна излучаемого света.

    Для информации. Согласно закону смещения Вина, бывает так, что тепловое излучение объектов вблизи комнатной температуры находится в инфракрасной области. Сюда относятся лампочки и даже люди.

    Итак, инфракрасное излучение – это не тепло, и оно (непосредственно) не вызывает тепло. Оно испускается теплом объекта при определенном диапазоне температур.

    Зрительные оттенки света обуславливаются длиной волны и ее направленностью, начиная с инфракрасного, потом красного, оранжевого, желтого…. фиолетового и кончая длиной волны ультрафиолетового излучения. И обратно тоже. Облучение тела светом вызывает усиление движения его молекул, любым светом, но инфракрасным, как самым длинноволновым, эффективнее всего.

    ИК паяльная станция своими руками – это инфракрасный обогреватель, отдающий тепло в окружающую среду посредством инфракрасного излучения.

    Инфракрасная паяльная станция своими руками

    Нижний подогрев

    Корпус подогрева можно изготовить из старого советского чемодана, сделанного из алюминия, или из системного блока компьютера. Но чемоданчик подойдет лучше, потому что его рабочее положение – горизонтальное. В крайнем случае, можно присмотреть подобный корпус на ближайшей барахолке.

    В корпусе необходимо прорезать болгаркой отверстие для керамических нагревателей. Из алюминиевой вырезки сделать подложку для нагревателей с ножками из обычных болтов с гайками. На подложке вся конструкция и будет держаться.

    Нижний подогрев состоит из четырех керамических нагревателей, купленных на AliExpress. Цена на них приемлемая, продавец обеспечивает быструю доставку.

    Каждый нагреватель (размерами: длина – 24 см, ширина – 6 см) имеет мощность по 600 Вт. Четыре нагревателя составляют нагревательную панель 24х24 см2. Этого достаточно для того, чтобы нагреть материнскую плату компьютера, не говоря уже о материнской плате ноутбука, размеры которой еще меньше. Помещаются на такой подогрев даже большие топовые видеокарты. Для сравнения, у стандартной заводской китайской станции такой подогрев площадью 150х150 см2, при этом стоит она недешево.

    Снизу нижнего подогрева каждый нагреватель подключается к клеммной колодке желательно еще советского производства. Колодка сделана из специального материала, который не плавится при высоких температурах. Подключение нагревателей последовательно-параллельное:

    • первый и третий соединены последовательно;
    • второй и четвертый – тоже последовательно;
    • первый и третий со вторым и четвертым – параллельно.

    Такая схема применяется для того, чтобы немножко разгрузить проводку. Если подключить все нагреватели параллельно, то итоговая нагрузка будет составлять 2850 Вт:

    • нижний подогрев – 600х4=2400 Вт;
    • верхний нагреватель при максимальной нагрузке – 450 Вт.

    Если в комнате работает еще электротехника (несколько лампочек, компьютер, паяльник, чайник), то защитный автомат на 16 ампер выбьет.

    Высчитывается последовательное сопротивление нагрузки по специальной формуле. В итоге нижний подогрев представляет собой нагрузку 1210 Вт. Несложно посчитать, что вся ИК станция будет потреблять 1660 Вт. Для такого оборудования это немного. По времени плата греется нижним подогревом до 100 0 примерно 10 минут.

    Читать еще:  Припой для нержавеющей стали

    Сверху, когда выполняется работа, на корпус с нагревателем можно поставить металлическую решетку от холодильника. Но лучше использовать стеклокерамику по размеру корпуса, и сделать удобный термостол для ремонта платы.

    Верхний подогрев

    Верхний подогрев можно сделать из советского фотоувеличителя УПА-60. Модель подходит для самодельной паяльной станции. Керамический нагреватель размерами 80х8 см идеально крепится к фотоувеличителю. При этом можно регулировать высоту нагревателя и двигатель в любую сторону. Штатив удобно прикрепить к самому столу, а нижний подогрев двигать при необходимости. Размеров нагревателей достаточно, чтобы прогревать большие чипы и сокеты для процессорных разъемов.

    Все б/у детали можно купить в интернете через доску объявлений, керамический нагреватель – на AliExpress.

    Блок управления

    Готовый пластиковый бокс можно приобрести в специальном магазине для самостоятельного изготовления электроники, или сделать корпус из обычного компьютерного блока питания. На панели управления размещают:

    • PID контроллер REX-C100;
    • выключатели для нижнего и верхнего подогрева;
    • диммер 2 кВт.

    Надо отметить, что внутренних проводов в корпусе довольно много, поэтому бокс нужно выбирать немаленьких размеров.

    Отверстия для вывода элементов управления на лицевую панель вырезаются электролобзиком со специальной пилочкой по металлу. Обычно это трудностей не вызывает при наличии практики с подобным инструментом.

    PID контроллер REX-C100

    PID контроллер REX-C100 можно также заказать на AliExpress. В комплекте с ним продавец поставляет твердотельное реле и термопару. То есть контроллер считывает, какой температуры достигает керамический нагреватель. Пока температура не достигнет нужной величины, твердотельное реле находится в открытом состоянии и пропускает электрический ток на керамический нагреватель.

    При достижении устройством необходимой температуры срабатывает твердотельное реле и отключает подачу тока на керамический нагреватель. Диммер управляется вручную. Обычно его устанавливают на максимуме, чтобы быстрее подогревался верх.

    Данный прибор нужен для работы, чтобы считывать информацию о температуре, которая возле чипа. К нему подключена обычная термопара, конец которой ставят возле чипа. На дисплее тестера будет отображена температура непосредственно возле чипа.

    Важно! Провод от термопары заматывают термостойким скотчем, потому что оплетка проводов горит при высокой температуре.

    Тестер для ИК станции своими руками

    В итоге собранная на скорую руку самодельная ИК паяльная станция порядка десяти раз будет дешевле стоить, нежели готовое изделие. Устройство можно дорабатывать и постепенно улучшать.

    Работа на практике

    Работа устройства будет описана на примере починки платы от ноутбука. Одной из неисправностей платы является поломка видеочипа. Бывает достаточно прогреть его термофеном, и изображение на экране появляется. Скорее всего, в этом случае происходит отвал кристалла от текстолита. Менять чип довольно дорого. Но если прогреть его, то срок службы ноутбука этим можно продлить. На примере такого банального прогрева и может применяться самодельная инфракрасная паяльная станция.

    Для начала плату подготавливают к прогреву, снимают детали:

    • пленки, потому что они при высокой температуре начинают плавиться;
    • процессор;
    • память.

    Компаунд лучше снимать пинцетом после предварительного подогрева термофеном. Фен ставят при этом на температуру 1800, средний поток воздуха.

    Важно! Всю окружающую область вокруг чипа необходимо обклеить фольгой, чтобы не греть элементы платы. На всякий случай следует закрыть и пластиковые разъемы для памяти.

    Далее по периметру чипа наносят флюс RMA-223, тоже китайский. Купленный на AliExpress для таких целей подходит. Для удобства его перезаправляют в обычный шприц.

    Для информации. Использование флюсов облегчает процесс пайки и предотвращает окисление металла спаиваемых элементов.

    Плату в таком виде устанавливают на решетку нижнего подогрева паяльной станции. Возле чипа располагают термопару. Другая термопара находится вблизи с нагревателями, её задача считывать температуру их нагрева. Включают нижний подогрев на блоке управления. На тестере и PID контроллере появляются рабочие параметры.

    Когда низ прогреется, нужно дождаться, чтобы температура вокруг чипа была не менее 1000, в зависимости от материала припоя. Если припой бессвинцовый, то желательно прогреть до 1100.

    ИК станция своими руками

    Расстояние между чипом и верхним нагревателем должно быть около 5 см. Центр чипа должен быть строго под центром верхнего нагревателя, потому что максимальная температура идет от центра в стороны. Верхний нагреватель включают, когда температура возле чипа поднимется до 1100. Низ обычно прогревается 10 минут, затем включается верх, который должен нагреться до 2300. На PID контроллере верхнее значение показывает текущую температуру, нижнее – температуру, которую необходимо достичь.

    При достижении нужной температуры включают верхний нагреватель, который управляется диммером. Когда температура подойдёт ближе к 2300, мощность диммером нужно уменьшить. Это делается для того, чтобы нагрев слишком быстрый не был. Рекомендуется выдержать минуту при температуре 2300 и затем выключить устройство. Температура пойдет на спад.

    Важно! Нагрев чипа должен происходить плавно, так же как и его остывание. Резких перепадов температур не должно быть.

    Когда плата остынет, собирают ноутбук и включают. Должно все заработать. По такому же принципу можно сделать инфракрасный паяльник своими руками.

    Инфракрасная паяльная станция своими руками подключается к домашней розетке. При этом с проводкой ничего страшного не происходит, поскольку мощность её небольшая. По затратам ИК паяльная станция своими руками обходится совсем недорого. Комплектующие детали можно заказать через интернет на AliExpress.

    Инфракрасная паяльная станция своими руками

    Радиолюбителям рано или поздно приходится сталкиваться с пайкой элементов посредством массива шариков. BGA способ пайки используется повсеместно в массовых производствах различной техники. Для монтажа используется инфракрасный паяльник, который производит соединение деталей бесконтактным способом. Готовые модификации стоят дорого, а более дешевые аналоги не обладают достаточным функционалом, поэтому возможно изготовить паяльник в домашних условиях.

    Описание процесса ИК пайки

    Принцип работы инфракрасной паяльной станции заключается в воздействии сильными волнами длиной 2-7 мкм на элемент. Устройство для пайки самодельными ИК паяльными станциями как самодельными, так и приобретаемыми, состоит из нескольких элементов:

    • Нижний нагреватель.
    • Верхний нагреватель, отвечающий за основное воздействие на материалы.
    • Конструкция держателя платы, размещенная на столе.
    • Контроллер температуры, состоящий из программируемого элемента и термопары.

    Длина волны, напрямую зависит от температурных показателей источника энергии. Материалы в различной форме подвергаются пайке с помощью ИК станции, сделанной своими руками, существуют основные параметры передачи энергии, непрозрачность, отражение, полупрозрачность и прозрачность. Перед изготовлением ИК паяльной станции своими руками нужно понимать, что существуют некоторые недостатки данных систем:

    • Разная степень поглощения энергии компонентами ведет за собой неравномерный прогрев.
    • Каждая плата ввиду различных характеристик требует подбора температур, в противном случае, компоненты перегреваются, выходят из строя.
    • Наличие «мертвой зоны», где инфракрасная энергия не достигает требуемого объекта.
    • Обязательное условие защиты поверхностей остальных элементов от испарения флюсов.

    Нагревание происходит за счет передачи тепла к монтажной плате. Тепловое воздействие инфракрасной станцией происходит поверх детали, температуры бывает не достаточно, поэтому конструкция подразумевает нагрев нижней части. Нижняя часть состоит из термостола, процесс пайки может осуществляться посредством спокойного инфракрасного излучения, либо потоком воздуха.

    Инфракрасная паяльная станция своими руками

    Профессиональное оборудование стоит достаточно дорого, более дешевые аналоги не обладают достаточным функционалом. Для экономии средств, выполнения нужных операций с BGA контроллерами, возможно изготовить инфракрасную паяльную станцию своими руками. Сборка возможна из доступных на рынке и подручных материалов. Конструкция представляет собой изготовленный из старого светильника термостол, оснащенный лампами галогенового типа. Контроллер и верхний нагреватель приобретается на рынке или собирается из старых запасных частей.

    Инструменты для изготовления инфракрасного паяльника

    Термостол потребует наличие отражателей, галогеновых ламп, размещенных в корпусе из профиля или листового металла. При изготовлении инфракрасной паяльной станции своими руками, стоит придерживаться чертежей, которые возможно разработать самостоятельно или позаимствовать у других исполнителей. Обязательно корпус снабжается местом для термопары, которая передает информацию на контролер для предотвращения резких перепадов температуры, избыточного нагрева материала.

    Сборка ИК паяльной станции подразумевает самодельные конструкции в виде крепежа из штатива. Контроль температуры нагревательного узла производится второй термопарой. Устанавливается параллельно с нагревателем, штатив закрепляется на панели таким способом, чтобы ИК элемент можно было перемещать над поверхностью термостола. Расположение платы производится выше галогеновых ламп на 2-3 см, в корпусе термостола. Крепление производится кронштейнами, для изготовления возможно использовать ненужный алюминиевый профиль.

    Принципиальная схема контроллера для инфракрасной паяльной станции своими руками

    Изготовление паяльной лампы своими руками в первую очередь потребует корпус. Для охлаждения системы требуется монтаж одного мощного или нескольких кулеров, материал желательно выбрать из оцинкованной стали. После полной сборки производится наладка системы путем запуска схемы, отладки устройства.

    Нижний подогрев

    Нижний подогрев может быть изготовлен несколькими способами, но гораздо лучшим вариантом является использование галогеновых ламп. Рациональным решением является установка своими руками ламп суммарной мощностью от 1 кВт. По бокам конструкции устанавливаются порожки, которые зафиксируют плату. Установка материалов для пайки производится на швеллер, для более мелких деталей используются подложки или прищепки.

    Верхний подогрев

    Известно, что верхний нагреватель подходящего качества невозможно изготовить своими руками. Для достижения наилучшего результата в процессе ИК пайки, необходимо воспользоваться керамическими нагревательными элементами. Для инфракрасной паяльной станции, изготовленной своими руками оптимальным вариантом является использование нагревателя ELSTEIN. Производитель показывает наилучшие результаты, спектр излучения идеально подходит для замены BGA плат, других деталей. Не рекомендуется экономить на покупке верхнего нагревателя — обогревателя при сборке паяльной станции своими руками, т.к. при работе некачественным инструментом возможно повреждение платы или собранной конструкции.

    Конструкция для верхнего подогрева возможна из самодельной станины. Достаточно иметь регулировку по высоте и широте для комфортной работы на инфракрасной паяльной станции, изготовленной своими руками. К штативу крепится термопара для контроля температуры.

    Блок управления

    Корпус контроллера подбирается по размерам в соответствие с устанавливаемыми деталями. Подходящим вариантом может оказаться кусок листового метала, который без труда возможно отрезать ножницами по металлу. Размещается в блоке управления также вентиляторы, различные кнопки, а также дисплей и сам контроллер. В роли контроллера выступает Arduino, функциональность вполне достаточна для выполнения пайки BGA схем своими руками.

    Детали для самодельного прибора

    Перед сборкой любого оборудования своими руками, необходимо подготовить материалы и инструменты. Для инфракрасного паяльника понадобятся:

    • Комплект галогеновых ламп, количество которых зависит от формы будущего нижнего нагревателя паяльной станции, оптимальное количество подбирается в диапазоне от 4 до 6 штук.
    • Керамическая инфракрасная головка мощностью не менее 400 ватт для верхнего нагревателя.
    • Шланг от душевой лейки для проводов, алюминиевые уголки.
    • Стальная проволока, крепежный элемент от старого фотоаппарата или настольной лампы для изготовления штатива.
    • Контроллер Arduino, 2 реле и термопары, а также блок питания выходом 5 вольт, который можно изготовить от зарядного устройства мобильного телефона.
    • Винты, разъемы и дополнительные периферии.
    Читать еще:  Как напылить металл в домашних условиях

    Инфракрасная паяльная станция своими руками на основе Arduino

    В процессе сборки понадобятся чертежи, разобрать которые помогут элементарные знания в электронике.

    Применение и устройство

    Инфракрасный паяльник используется в основном при условиях отсутствия доступа к заменяемым компонентам. Применяется при замене мелких деталей, основным достоинством является отсутствие нагаров и прочих отложений, как при работе обычным паяльником, а также малая возможность повредить соседние элементы. Для домашнего использования возможно изготовить паяльник своими руками, используя прикуриватель от автомобиля.

    Инфракрасная паяльная станция промышленного производства

    Работа устройства происходит при питании 12 вольт, такое напряжения возможно получить путем использования преобразователя или не нужного блока питания для компьютера.

    Изготовление

    Перед сборкой паяльной станции, извлекается из корпуса прикуривателя нагревательный элемент. К контактам питания присоединяются провода питания, к центральному проводу возможно подвести медный провод с изоляцией. Сделать паяльник не составит большого труда, достаточно изолировать соединение на расстоянии от нагревательного элемента, возможно использовать термоусадочную трубку.

    Корпус производится из тугоплавкого материала. Возможно воспользоваться нерабочим паяльником или приобрести кусок стали. Необходимо следить за отсутствием соприкосновения проводов. Важно понимать, что подобного рода устройство используется при незначимых работах, так как температурные пороги, другие параметры не контролируются.

    Инфракрасная паяльная станция

    Беспрерывное совершенствование паяльной техники обусловлено появлением более сложных печатных плат радиоэлектроники. Инфракрасная паяльная станция (ИПС) предназначена для работы с новым поколением чувствительных микросхем и других радиодеталей. Необычный подход к пайке основан на применении светового луча в инфракрасном диапазоне в качестве носителя тепловой энергии.

    Особенности и преимущества

    Особенностью ИК паяльной станции является то, что, в отличие от индукционного устройства, в работе отсутствует материальный контакт с радиодеталью, по сравнению с феном, нет давления воздушного потока. Весь процесс пайки происходит полностью в бесконтактном режиме.

    К преимуществам ИПС надо отнести следующие достоинства:

    • в отличие от других конструкций, инфракрасный паяльник обеспечивает быстрый монтаж или, наоборот, снятие припоя в условиях полного контроля уровня нагрева обрабатываемой радиодетали;
    • сфокусированный пучок инфракрасного излучения позволяет точечно направить тепловой энергопоток в нужное место платы;
    • ИПС даёт возможность установить режим ступенчатого роста температуры нагрева в рабочей зоне;
    • инфракрасная пайка надёжно восстанавливает нарушенное соединение площадки микросхемы с печатной платой;
    • отсутствие припоя и флюса в работе станции позволяет сохранять рабочее место в чистоте и не засорять плату каплями олова и кристаллами присадки.

    По типу инфракрасного излучателя различают два вида ИПС:

    Керамические

    Примером керамической инфракрасной паяльной станции является модель Achi ir6000. Станция обладает массой достоинств. Она зарекомендовала себя как надёжное, прочное и долговечное оборудование. Рабочая температура в зоне пайки достигается в течение 10 минут. В станциях такого типа используется сплошной плоский или полый керамический излучатель.

    В отличие от керамического паяльника, кварцевая станция достигает максимального нагрева за 30 секунд. Кварцевые станции очень чувствительны к частым циклам включения – выключения.

    Внимание! Если специфика паяльного режима требует в течение короткого периода нескольких отключений оборудования, то лучше пользоваться керамической паяльной станцией.

    Принцип действия

    Чтобы понять действие инфракрасной паяльной станции, надо понимать принцип соединения микропроцессора с печатной платой. Микросхемы ноутбуков и различных электронных устройств не имеют выводных ножек. Вместо этого на их тыльной стороне расположена сетка из контактных точек. Такая же решётка есть на печатной плате.

    На обеих поверхностях контакты покрыты легкоплавкими шариками. Во время пайки микропроцессор нагревается инфракрасным излучателем до температуры плавления припоя. В то же время нижняя поверхность платы нагревается ТЭНами нижней платформы станции. Прогревом контактных соединений с двух сторон достигается быстрая пайка радиодетали. Благодаря узконаправленному потоку тепла, высокая температура не успевает распространиться на другие компоненты платы.

    Важно! Станция с помощью программного обеспечения может осуществлять различные ступени температурного режима в определённых промежутках времени.

    Описание процесса ИК-пайки

    Процесс инфракрасной пайки состоит из нескольких фаз:

    1. Печатную плату помещают на платформу станции.
    2. Её фиксируют боковыми упорами и дополнительными рейками.
    3. Вокруг монтажного участка пластиковые элементы закрывают клейкой фольгой.
    4. На высоте 3-4 см от микросхемы устанавливают инфракрасный излучатель.
    5. Термопару на гибкой трубке подводят непосредственно к месту пайки.
    6. С помощью кнопок на интерфейсах термоконтроллеров задаются режимы работы верхнего и нижнего нагревателя.
    7. К месту пайки подводят светильник на стальном гибком шнуре.
    8. Включают станцию нажатием стартовой кнопки.
    9. По истечении заданного времени микропроцессор снимают с платы с помощью пинцета.
    10. Таким же образом, только в обратном порядке, монтируют новый микропроцессор.

    Конструктивные особенности

    Инфракрасная паяльная станция представляет собой довольно габаритное оборудование:

    • ширина – 450-475 мм;
    • высота – 430-450 мм;
    • глубина – 420-450 мм.
    • высота опорного штатива ИК излучателя – 200 мм.

    Дополнительная информация. Размеры различных моделей станций могут немного отличаться от вышеуказанных данных. Площадь рабочего стола рассчитана на печатные платы максимальной величины и любой конфигурации.

    Расположение органов управления и подвижных узлов ИК станции:

    1. Рабочий стол представляет собой углублённую платформу из ряда ТЭНов, закрытую металлической сеткой.
    2. Параллельные упоры с фиксаторами передвигаются по направляющим. Ими с обеих сторон зажимают печатную платформу.
    3. Поперечные борта оснащены винтовыми опорами, которые поддерживают плату на нужной высоте.
    4. В комплекте есть рейки, которыми дополнительно крепят плату.
    5. На вертикальной опоре установлен поворотный механизм, на котором закреплен инфракрасный нагреватель.
    6. ИК излучатель может передвигаться в прямолинейном направлении по направляющим штатива. Одновременно паяльник может поворачиваться вокруг вертикальной опоры.
    7. На передней панели оборудования расположены:
    • кнопка включения;
    • разъём для термопары;
    • кнопка остановки;
    • клавиша включения вентилятора рабочего стола;
    • включатель подсветки;
    • кнопка верхнего охлаждения;
    • термоконтроллер нижних нагревателей;
    • программируемый контроллер верхнего ИК нагревателя.

    Температура верхнего ИК нагревателя может достигать от 220 до 270 градусов. Нижняя платформа прогревается до 150-1700 С.

    Изготовление своими руками

    Высокая стоимость ИК паяльной станции (60-150 тыс. руб.) стимулирует домашних мастеров к изготовлению такого оборудования самостоятельно. При наличии определённого опыта сделать своими руками самодельный инфракрасный паяльник вполне реально. Материальные затраты обычно не превышают 10 тыс. руб. Нужно подготовить материалы и компоненты, необходимые для сборки ИК станции.

    Детали для самодельного прибора

    Для сборки инфракрасной паяльной станции своими руками понадобится следующее:

    • лист жести;
    • гибкая спиральная металлическая трубка светильника;
    • рычажный штатив от старой настольной лампы;
    • галогеновые лампы;
    • оцинкованная мелкая сетка;
    • алюминиевый профиль в виде узких реек;
    • 2 термопары;
    • плата Ардуино Mega 2560 R3;
    • плата SSR 25-DA2x Adafruit MAX31855K – 2 шт.;
    • адаптер постоянного тока 5 вольт, 0,5 А;
    • провода.

    Монтаж паяльной станции состоит из нескольких этапов:

    1. Термостол;
    2. Инфракрасный нагреватель;
    3. ПИД-регулятор на Ардуино.

    Делать термостол своими руками желательно в условиях оборудованной домашней мастерской. Конструкция представляет собой нижний нагреватель, состоящий из следующих компонентов:

    • корпус, отражатель, лампы;
    • система крепежа платы;
    • гибкая трубка термопары;
    • светильник.
    Корпус
    1. Основу термостола изготавливают в виде рамы из Г-образного жестяного профиля. Можно полосы металла согнуть уголком. Ножницами делают вырезы и по ним сгибают металл, соединяя части саморезами.
    2. Проём закрывают металлической сеткой. Чтобы она не прогибалась, над сеткой протягивают металлические прутки в поперечном и продольном направлениях.

    1. Старый галогеновый светильник разбирают, освобождая отражатель от ламп. Его обрезают по внутреннему периметру корпуса.
    2. Лампы возвращают на место. Нагреватель вставляют в опорную раму снизу.

    Система крепежа платы

    Алюминиевую рейку разрезают на несколько отрезков. В них просверливают монтажные отверстия.

    Два отрезка профиля закрепляют на широких бортах корпуса, в канавках которых будут передвигаться винтовые фиксаторы поперечных реек. Всё станет понятно из нижнего фото.

    Гибкая трубка термопары

    Спиральную металлическую трубку устанавливают в одном из углов рамы, протягивают провода термопары. Длина трубки должна обеспечивать доступ термопары ко всей рабочей зоне станции.

    Светильник

    На конце гибкой трубки закрепляют патрон с пятивольтовой лампочкой с отражателем. Основание металлического шланга крепят в углу рамы так же, как и в предыдущем случае.

    Верхний нагреватель

    Инфракрасный излучатель состоит из двух элементов, это:

    1. Керамическая пластина в корпусе.
    2. Держатель.

    Керамическая пластина в корпусе

    Пластину можно приобрести на рынке электротехники или заказать на сайте интернет-магазина. Главное – сделать прочный корпус, в котором был бы обеспечен свободный приток воздуха. Как это сделать, видно на фото.

    Дополнительная информация. Вмонтированный в верхнюю плоскость корпуса ИК пластины кулер от компьютера поможет предохранить радиодеталь от перегрева.

    Держатель

    Для держателя идеально подходит двухсекционный кронштейн настольного светильника. Основание кронштейна крепят к раме станции. Верхний поворотный шарнир соединяют с корпусом верхнего нагревателя.

    ПИД-регулятор на Ардуино

    Сделанная ИК станция своими руками обязательно комплектуется блоком управления. Для него нужно сделать отдельный корпус. Внутри помещают плату Ардуино и ПИД регулятор. Примерная схема компоновки деталей блока управления станцией видна на фото.

    Микропроцессорная платформа Arduino Mega 2560 R3 управляет режимами нагрева керамического ИК излучателя и платформы термостола. К плате Ардуино присоединены провода вентиляторов (верхний и нижний), ПИД регулятора, термопар и светильника.

    Программирование паяльной станции осуществляется через интерфейс контроллера. Его экран отражает текущий процесс нагрева печатной платы с обеих сторон.

    В роли тестера выступают термопары. Они, в конечном счёте, являются источниками информации о состоянии уровня нагрева тыльной стороны печатной платы и верхней поверхности микропроцессора.

    Работа на практике

    Перед началом работы важно правильно настроить ИК паяльную станцию.

    После того, как закрепили печатную плату на термостоле и подвели ИК излучатель к микропроцессору, переходят к настройке работы станции. Делают это с помощью клавиш интерфейсов термоконтроллеров верхнего и нижнего нагревателей.

    На дисплее контроллёра нижнего нагрева вверху отражается текущая температура. Кнопками на нижней строке задают конечную величину степени прогрева печатной платы.

    Программируемый контроллер верхнего нагрева располагает 10-ю опциями (термопрофилями). Термопрофиль отражает зависимость температуры от времени. То есть прогрев можно запрограммировать ступенчато. Каждый шаг задаёт определённое время, в течение которого температура не меняется.

    Сложность в работе

    Инфракрасные паяльные станции серийного производства просты в работе и понятны в управлении. Сложности в работе станции могут возникнуть по причине несоответствия реальных характеристик станции данным в сопроводительной документации. За это отвечает изготовитель оборудования согласно гарантийным обязательствам.

    Для людей, занимающихся ремонтом современных электронных устройств в домашних условиях, самодельная инфракрасная паяльная станция – первая необходимость. Приобретать профессиональное оборудование имеет смысл для мастерских, где есть большие объёмы ремонтных работ.

    Верхний нагреватель для паяльной станции своими руками

    ИК паяльная станция с цифровым управлением.

    Автор: Black
    Опубликовано 09.09.2010

    В данной статье описывается, как самостоятельно изготовить инфракрасную паяльную станцию с небольшими затратами. Устройство позволяет производить монтаж/демонтаж SMD и BGA компонентов на печатной плате. Данная паяльная станция рассчитана на работу с большими платами (например, материнские платы персональных компьютеров или ноутбуков), чего не позволяют делать дешевые «поделки» китайского производства, которые рассчитываются как правило, на работу с небольшими печатными платами и элементами.
    Так уж случилось, что в настоящее время происходит массовый переход на поверхностный монтаж, и ничего с этим не поделаешь. Всё бы ничего, паяльник еще справляется, но вот только не с BGA (взгляните хотя бы на материнскую плату вашего компьютера, чип есть, а выводов нет: Вернее их не видно). Такие микросхемы паяются полным прогревом вместе с платой. Методов пайки существует не много, как правило, это горячий воздух или ИК излучение. У каждого метода есть свои достоинства и недостатки. Но в любом случае требуется прогрев платы, в чём и заключается сложность пайки таких микросхем «на коленке». Связано это с тем, что при нагреве небольшого участка платы происходи её расширение (выпучивание нагреваемого участка), что может привести к повреждению межслойных проводников и отрыву контактных площадок. Поэтому, необходим прогрев всей платы (не до температуры пайки, но где-то на 2/3 от неё). Подробнее от процессе ручной пайки BGA можно прочитать на сайтах посвященных ремонту компьютерной техники.
    Данное устройство будет полезно многим радиолюбителям занимающимся ремонтом аппаратуры, компьютерной и видео техники. А так же тем, кто просто собирает разные схемы из деталей, выпаянных из старых плат.
    Устройство позволяет монтировать/демонтировать и просто пропаивать BGA-компоненты, восстанавливая контакт, так же при помощи данного устройства можно легко «потрошить» любые платы «на детали», что помогает избавиться от «лишнего».
    Теперь о самом устройстве и принципе его работы. Устройство состоит из самой установки и блока управления, который выполнен в отдельном корпусе. На установке имеется место крепления плат и два нагревателя. Верхний нагреватель имеет возможность изменять своё положение относительно закрепленной платы. В качестве нижнего нагревательного элемента я использую конфорку для электроплиток мощностью 2 кВт и диаметром 220 мм. А в качестве верхнего 4 трубчатые галогеновые лампы по 150 Вт каждая и длинной по 78мм. Выглядит это примерно вот так:

    Читать еще:  Как паять медный радиатор

    О конструкции корпуса смотрите отдельную инструкцию, там более-менее подробно описан процесс сборки и даны размеры заготовок. Материал преимущественно листовая сталь от старых компьютерных корпусов, в них применялась сталь толщиной порядка 1 мм, не то что в современных: В принципе для верхнего нагревателя подойдёт и 0,3-0,5 мм, а для нижнего желательно потолще, т.к. плитка штука не лёгкая. В качестве связующего звена использованы винты и гайки M3 c шайбами. Штатив выполнен из двух стальных реек снятых со старого матричного принтера (направляющие блока печатающей головки).
    Блок управления выполнен на МК ATmega16, тактируемого от внутреннего RC-генератора частотой порядка 8 МГц. В качестве индикатора в схеме применён широко распространённый двух строчный ЖК-модуль с контроллером HD44780 (и совместимыми). Рассмотрим принципиальную схему:

    Схема состоит из блока усилителей термопар, МК с дисплеем, клавиатурой и звуковым сигнализатором, схемы детектора нуля, силовой части и блока питания. Блок усилителей собран на ОУ DA1 и DA2, вместо LM358 допускается использовать LM2904. Далее сигналы поступают на АЦП МК.
    МК имеет типовую обвязку в виде клавиатуры и дисплея. LC-цепочка L1 C11 питает внутреннюю схему АЦП МК. Резистором R35 устанавливается контрастность дисплея. На плате выведены сигналы для внутрисхемного программирования (ISP). К МК так же подключен пьезокристаллический звуковой излучатель BQ1. Небольшое примечание по поводу подключения дисплея, в зависимости от производителя в дисплеях могут быть поменяны местами контакты 1 и 2 (питание) и еще возможно понадобится установить гасящий резистор в цепи подсветки (вывод 15 дисплея).
    Схема детектора нуля имеет два варианта, что бы, так сказать, облегчить повторяемость. Выбор варианта зависит от применяемого вами блока питания, если блок питания трансформаторный, то проще использовать схему выделенную пунктиром, а при использовании импульсного БП придётся собирать схему на оптопаре U1. В моём блоке управления применён трансформаторный БП.
    Блок питания. Можно применить как импульсный БП с выходными напряжениями +5В и +12В, так и трансформаторный с интегральными стабилизаторами 7805 и 7812, включенных по типовой схеме. В трансформаторном БП делается доработка в виде дополнительного диода (VD6) сразу после диодного моста и перед фильтрующим конденсатором (см. схему обведённую пунктиром). Блок питания должен обеспечивать ток порядка 1А по обоим каналам.
    Силовая часть состоит из двух одинаковых каналов на симисторах VS1 и VS2. Имеется два варианта управления ими, это через оптосимисторы (схема показана пунктиром) и через импульсные трансформаторы (их параметры указаны на схеме). Распиновка симисторов так же показана на схеме. Допускается применение симисторов импортного производства. Симисторы необходимо устанавливать на радиаторы т.к. выделяемая мощность составляет примерно 5-10 Вт. Неоновая лампа HL1 устанавливается вне блока управления поближе к нижнему нагревателю (в корпусе установки) и сигнализирует о включении нижнего подогрева. Для работы с оптосимисторами или трансформаторами прошивки РАЗЛИЧАЮТСЯ.
    Так же к силовой части можно отнести схему управления вентилятором, на фото выше этого вентилятора не видно, он выполнен в виде отдельного «фена» и предназначен для охлаждения места пайки, это позволяет сделать пайку более качественной.
    В данной схеме применяется метод «беспомехового» регулирования мощности, то есть путём «пропускания» полупериодов сетевого напряжения, количество пропускаемых полупериодов определяет мощность. Данный метод хорош тем, что он не даёт импульсных помех на электросеть, но при работе с лампами накаливания есть недостаток — это мерцание. В принципе это не критично и работе не мешает.
    В программе для автоматического регулирования температуры используется алгоритм ПИД-регулятора.
    Немного фотографий моего варианта блока управления:

    Кстати, на фотографиях печатной платы присутствует кварцевый резонатор, и разводка несколько отличается, связано это с тем, что это первый вариант и в нём присутствует порт RS-232 для соединения с компьютером. Он требовался для отладки программы в процесс её написания. Для работы самой программы точность тактового генератора не требуется, т.к. для отсчёта времени (секунд) используется частота сетевого напряжения, чего вполне достаточно.
    Глядя на схему и программу, можно подумать, что она еще на стадии разработки, что не далеко от истины, дело в том что задумывалось больше чем реально сделано, но как показала практика текущих функций хватает для многих задач и что бы понять чего бы еще такого доделать, требуется какое-то время поэксплуатировать устройство: Так же я надеюсь на Вас уважаемый читатель, что вы подскажете, каким образом можно улучшить функциональность и удобство работы с этим инструментом.
    Несколько фото того что получилось:

    Блок питания, оптосимисторы и выходные симисторы располагаются отдельно. Изначально на основной плате присутствовали транзисторы VT1 и VT2, теперь их нет т.к. удалось достать оптосимисторы. Решение с импульсными трансформаторами считаю не очень надёжным и красивым, т.к. есть некоторые сложности в их намотке — требуется хорошая изоляция первичной и вторичной обмоток, а кольца имеют предел по количеству намотанного на них изолятора. Но если достать оптосисмисторы не удаётся, всегда есть вариант с трансформаторами.
    ВНИМАНИЕ: При монтаже выходных симисторов и их радиаторов (особенно применяя болтовые TC122, которые имеют электрический контакт с радиатором) помните, что они находятся под высоким напряжением и их требуется располагать, так что бы они ГАРАНТИРОВАНО, не могли замкнуть на корпус (если он металлический) и другие проводники схемы. Провода силовых цепей должны быть рассчитаны на ток порядка 10А.
    В моём случае в корпусе блока управления установлен вентилятор, в принципе на практике нагрев симисторов не такой сильный, как мне казалось при разработке, но всё же рекомендую установить, при длительной работе возможен перегрев.
    Вот фото процесса работы (верхний нагреватель выключен и сдвинут в сторону):

    На фото происходит пропайка видеочипа компьютерной видеокарты (частая их неисправность заключается в повреждении пайки из-за перегрева), фольга используется для ограничения площади воздействия верхнего нагревателя.
    Для соединения нагревателей с блоком управления у меня используются провода от старых утюгов, они в данном случае подходят наилучшим образом, т.к. имеют подходящее сечение проводников и термостойкую изоляцию.
    В конструкции применяются термопары K-типа от недорогих мультиметров, удалось достать отдельно небольшое количество у продавцов таких мультиметров, т.к. приборы оказались бракованными. Термопары при работе располагаются в зоне пайки и должны прижиматься к плате, для нижнего нагревателя снизу, для верхнего непосредственно в зоне пайки. Прижим обеспечивается очень легко, это связано с тем, что провода термопар, как правило, гибкие и в тоже время достаточно упругие.
    Теперь о процесс сборки блока управления. После монтажа всех элементов на плате (включая МК) тщательно проверяется качество монтажа. Затем можно перейти к прошивке МК, для этого лучше и безопаснее использовать лабораторный (не штатный источник питания) или питать от компьютера через программатор. Для прошивки я использую программатор PonyProg (https://www.lancos.com/prog.html). Напомню, что при работе с PonyProg сначала нужно откалибровать программу, затем прочитать (!) фьюзы, загрузить прошивку (HEX), загрузить данные для EEPROM (EEP) (для этого в окне проводника меняем тип файла), прошить (Write Device), опять открыть вкладку с фьюзами, установить их (как именно см. ниже), записать. Для удачной прошивки МК советую следовать этой последовательности.
    BootLock12 = 1 (галки нет)
    BootLock11 = 1 (галки нет)
    BootLock02 = 1 (галки нет)
    BootLock01 = 1 (галки нет)
    Lock2 = 0 (галка есть)
    Lock1 = 0 (галка есть)

    OCDEN = 1 (галки нет)
    JTAGEN = 1 (галки нет)
    SPIEN = 0 (галка есть)
    CKOPT = 1 (галки нет)
    EESAVE = 1 (галки нет)
    BOOTSZ1 = 1 (галки нет)
    BOOTSZ0 = 1 (галки нет)
    BOOTRST = 1 (галки нет)

    BODLEVEL = 0 (галка есть)
    BODEN = 0 (галка есть)
    SUT1 = 0 (галка есть)
    SUT0 = 0 (галка есть)
    CKSEL3 = 0 (галка есть)
    CKSEL2 = 1 (галки нет)
    CKSEL1 = 0 (галка есть)
    CKSEL0 = 0 (галка есть)

    Далее, проверяем работоспособность подачей питания, на дисплее должно отобразиться приветствие (с коротким звуковым сигналом) и затем появиться сообщение об ошибке. Это нормально, так и должно быть. Далее следуйте Инструкции по настройке и эксплуатации паяльной станции (находится в приложении).
    Подробно о сборке моего варианта можно прочесть в Инструкции по сборке установки, но это лишь один из многих вариантов, и далеко не самый идеальный, поэтому имеет лишь рекомендательный характер. Например, проще и быстрее для нижнего подогрева использовать готовый галогеновый прожектор, он конечно имеет более малую площадь, но за то ничего мастерить не нужно. Или наоборот использовать сверху и снизу кварцевые ИК излучатели с высокой эффективностью, но с ними уже сложнее.
    Еще одно немаловажное замечание, при работе с галогеновыми лампами помните, что их нельзя включать со следами жира на колбе (от этого они могут расплавиться или взорваться), поэтому перед включением тщательно обезжириваем бензином или ацетоном. И еще при работе очень рекомендую обзавестись хорошими очками от солнца, они вам очень пригодятся! Удачи!

    Ссылка на основную публикацию
    ×
    ×
    Для любых предложений по сайту: [email protected]