Обработка меди на токарном станке

Токарная обработка меди

Токарная обработка меди недорого в ООО “Токарная обработка” на okuma B400, 16К20, 1К63, ДИП500 и токарных автоматах. От 3х дней. Есть закалка, гальваника. Отправьте запрос с чертежами на электронную почту: [email protected]

Токарная обработка меди

Наше производственное предприятие предлагает услуги токарной обработки меди. Наши специалисты выполняют работы на высокоточном оборудовании, которое позволяет добиться необходимой точности и шероховатости поверхности.

Для расчета стоимости токарной обработки меди пошлите запрос с чертежами на электронную почту [email protected] Ответим на любые вопросы 8 3439 38 00 81, 8 3439 38 98 01, доставка по всей России.

На сегодняшний день самым популярным способом изготовления деталей из меди является срезание лишних слоев с поверхности заготовки на токарном оборудовании для придания детали необходимой формы. Все токарные операции выполняются на современных металлорежущих станках, многие из которых оснащены числовым программным управлением. Наше оборудование позволяет обрабатывать различные тела вращения из меди: гайки, муфты, кольца, втулки, шкивы, зубчатые колеса, валы и т.д.

Виды токарной обработки меди.

Высококвалифицированные работники нашей компании обрабатывают торцевые, фасонные, конические, цилиндрические и комбинированные поверхности деталей из меди. Также на имеющихся станках мы обрабатываем отверстия, протачиваем канавки, нарезаем резьбу, зенкеруем отверстия и вытачиваем различные уступы. Для всех операций используется высококачественный режущий инструмент: резьбонарезные головки, плашки, метчики, развертки, зенкеры, свела, различные виды резцов и т.д. Качественные резцы с легкостью врезаются в медные заготовки и отделяют необходимый слой с поверхности. Весь процесс токарной обработки меди протекает с высокой скоростью, что позволяет получить детали отличного качества. Точность формы изделий обеспечивается подбором резца требуемой геометрии, а также высокой точностью подачи режущего инструмента. Заготовки вращаются с большой скоростью, а числовое программное управление обеспечивает высокоточную поперечную и продольную подачу резца относительно детали.

Специалисты нашего предприятия выполняют следующие виды токарной обработки меди:

  • Обработку цилиндрических поверхностей;
  • Сверление отверстий;
  • Обработку фасонной поверхности;
  • Обработку конической поверхности;
  • Обработку уступов и торцов;
  • Обрезку заготовок;
  • Выточку фасок;
  • Развертывание отверстий;
  • Нарезку резьбы.

Для выполнения токарной обработки деталей используются расточные резцы, канавочные, отрезные, проходные отогнутые, упорные, проходные прямые, фасонные резцы, накатки, резьбовые резцы, зенкера, сверла, развертки и метчики. Весь используемый инструмент сертифицирован.

Технология токарной обработки меди.

Наше предприятие выполняет работы на токарном оборудовании различного типа. В производственном арсенале имеется: токарно-карусельное, лоботокарное, токарно-револьверное и токарно-винторезное оборудование. В зависимости от требований заказчиков и чертежей, для изготовления медных деталей выбирается оптимальный вариант обработки.

На токарно-винторезном оборудовании наши специалисты выполняют высокоточные операции по нарезке резьбы. Для получения деталей максимального качества, выставляется необходимая частота вращения детали и обеспечивается точная подача суппорта с установленным резцом. На оборудовании предусмотрен ручной и автоматический режимы подачи. Все рабочие места наших высококвалифицированных токарей оснащены современным токарным оборудованием, комплектами специализированной технологической оснастки, вспомогательным и измерительным инструментом, всевозможными приспособлениями и принадлежностями. Вся оснастки и инструмент тщательно подбираются исходя из технического задания по токарной обработке. Наличие профессионального оборудования позволяет нам в сжатые сроки выполнять крупносерийные и мелкосерийные заказы, изготовить детали по чертежам заказчика. Все рабочие места токарей содержатся в чистоте, что исключает сбои в работе оборудования и появление брака.

Наше предприятие постоянно калибрует имеющиеся станки и внедряет современные производственные технологии. Все сотрудники нашего предприятия имеют высокую квалификацию и большой опыт работы. Использование современного оборудования, оснащенного числовым программным управлением, для токарной обработки меди, позволяет максимально автоматизировать производственный процесс, что в свою очередь обеспечивает не высокую стоимость выполнения работ. Также достижение максимальной производительности и высокого качества на нашем предприятии обеспечивается полным использованием всего производственного потенциала и отличных технических возможностей нашего современного оборудования.

Любой наш клиент может быть уверен в высоком качестве обработки меди и своевременном получении заказа. Наши специалисты всегда бесплатно проконсультируют заказчиков по всем производственным вопросам. Обратившись к нам, клиенты не только сэкономят собственное время, но и существенно сократят свои затраты.

Режимы и особенности токарной обработки металла

[Токарная обработка] – один из распространенных методов обработки металла, посредством которого обычная стальная заготовка становится подходящей деталью для механизма.

Для токарных работ используются токарные станки, инструменты и приспособления в виде резцов, которые являются многофункциональными и способны создавать детали любых геометрических форм: цилиндрических, конических, сферических из всех металлов: титана, бронзы, нержавеющей стали, чугуна, меди и др.

Токарная технология

Токарная обработка металла производится на токарном станке, имеющим сверла, резцы и иные режущие приспособления, срезающие слой металла с изделия до установленной величины. Является оптимальной для работы с деталями из нержавеющей стали.

Вращение обрабатываемой детали называется главным движением, а постоянное перемещение режущего инструмента обозначается движением подачи, обеспечивающим непрерывную резку до установленных показателей.

Возможность сочетать различные движения позволяет обтачивать на токарном устройстве детали резьбовых, конических, цилиндрических, сферических и многих других поверхностей.

Также на токарных устройствах нарезается резьба, отрезаются части деталей из разных металлов и нержавеющей стали, обрабатываются различные отверстия сверлением, развертыванием, растачиванием. Все процессы подробно представлены на видео.

Для таких видов резания обязательно нужно использовать разнообразные измерительные приспособления (штангенциркули, нутромеры и т.д.).

Эти инструменты и приспособления определяют формы и размеры, и иные параметры деталей, изготовленных из различных материалов: свинца, железа, титана, нержавеющей стали и др.

Технология токарной обработки следующая. Когда под воздействием усилия в деталь врезается кромка режущего инструмента, данная кромка отмечает зажим обрабатываемого изделия.

В это время резцом удаляется лишний слой металла, превращающийся в стружку. Принцип резания можно посмотреть на видео.

Стружка подразделяется на следующие виды:

слитая — возникает при высокоскоростной обработке олова, меди, пластмасса, мягкой стали;

элементная — образовывается при низкоскоростной обработке твердого металла, например, титана;

надлом — образовывается при обработке малопластичных заготовок;

ступенчатая — образовывается при среднескоростной обработке металлов средней твердости.

Для производительного резания нужно правильно произвести расчет режима.

Расчет режимов производится на основе справочных и нормативных сведений, которые объединяет специальная таблица.

Таблица отображает режимы скорости резания для разных материалов: меди, чугуна, титана, латуни, нержавеющей стали и т.д. Также таблица отображает плотность и другие физические параметры материала.

Расчет режимов служит гарантией подбора оптимальных значений всех показателей и обеспечения высокоэффективного резания стали.

Любой расчет начинается с подбора глубины резания, после чего устанавливается подача и скорость.

Расчет должен выполнять строго в данной последовательности, так как скорость больше всего влияет устойчивость и износ резца.

Расчет режимов будет идеальным, если учесть геометрическую форму резца, металл изготовления резца и материал обрабатываемой заготовки.

В первую очередь, производится расчет величины шероховатости заготовки.

Исходя из данного показателя, выбирается оптимальный способ обточки поверхностей заготовки, таблица содержит данные значения.

Таблица содержит данные, указывающие на то, какой инструмент рекомендуется для резания.

Нужно иметь в виду, что таблица также содержит иллюстрации, демонстрирующие рациональные способы токарной обработки поверхностей разных металлов: олова, алюминия, титана, меди, нержавеющей стали.

Расчет глубины высчитывается показателем припуска на обточку поверхностей. На расчет величины подачи влияет уровень требуемой чистоты обточки.

Максимальные показатели выставляются для черновой обработки, минимальные – для чистовой.

Расчет скорости обработки поверхностей основывается на основе полученных значений по формулам. Допускается брать скорость, значения которой содержит таблица.

Также необходим расчет усилия резания по эмпирическим формулам, установленным для каждого типа обработки.

Преимуществами токарного резания можно назвать:

возможность производства деталей самых сложных форм: сферических, цилиндрических и др.;

возможность обработки любых металлов (и деталей из них) и сплавов: бронзы, нержавеющей стали, чугуна, титана, меди;

высокая скорость, качество и точность обработки металла и деталей;

минимальное количество отходов, так как образовавшаяся стружка может повторно переплавляться и использовать для создания деталей.

Какие используются резцы?

Широкий спектр токарных работ обеспечивается разнообразием обрабатывающих инструментов. Наиболее распространенным инструментом являются резцы.

Ключевое отличие всех резцов — форма режущей кромки, влияющей на тип обработки.

Все режущие приспособления изготовлены из металлов, прочность которых превышает прочность обрабатываемого изделия: вольфрама, титана, тантала.

Также можно встретить резцы керамические и алмазные, использующиеся для обточки, требующей высокой точности.

На эффективность работы оборудования влияет глубина и скорость обработки, величина продольной подачи заготовки.

Читать еще:  Как загнуть лист металла в домашних условиях

Данные параметры обеспечивают:

высокую скорость вращения шпинделя механизма и обточки детали;

высокую устойчивость устройства для рассекания;

максимально допустимое количество образовывающейся стружки.

Скорость резки зависит от вида металла, типа и качества режущего приспособления. Показатель обточки и скорость рассекания устанавливают частоту вращения шпинделя.

Токарный механизм может иметь чистовые или черновые резцы.

Геометрические размеры режущего приспособления позволяют срезать малые и большие площади слоя. По направлению движения резцы делятся на правые и левые.

По размещению лезвия и форме резцы бывают следующих видов:

оттянутые (когда ширина резца меньше ширины крепления).

По назначению режущие приспособления подразделяются на:

  • резьбовые;
  • расточные;
  • фасонные;
  • проходные;
  • канавочные;
  • подрезные;
  • отрезные.

Эффективность токарной обработки значительно увеличивается при грамотном подборе геометрии резца, влияющей на качество и скорость обработки.

Для правильного выбора нужно знать про углы, представляющие собой углы между направлением подачи и кромками режущего инструмента.

Углы бывают следующих видов:

Угол при вершине выставляется в зависимости от расточки резца, а главный и вспомогательный – от установки резца.

При больших показателях главного угла снизится стойкость резца, так как в работе будет только небольшая часть кромки.

При низких показателях главного угла, резец будет устойчивым, что обеспечит эффективную обработку резцом.

Для тонких деталей средней жесткости главный угол выставляется в значении 60-90°, для деталей с большим сечением выставляется угол в 30-45°.

Вспомогательный угол для создания деталей должен составлять 10-30°. Большое значение угла ослабит вершину резца.

Для торцовых, сферических и цилиндрических поверхностей деталей одновременно используются упорные проходные резцы.

Для наружных поверхностей используются отогнутые и прямые резцы, отрезные резцы применяются для обточки канавок и отрезания определенных частей изделия.

Обточка фасонных поверхностей, у которых образуется линия длиной до 4 см, осуществляется фасонными резцами круглыми, стержневыми, тангенциальными и радиальными по направлению подачи.

Какое оборудование используется?

Самым востребованным оборудованием для резания поверхностей является токарно-винторезный станок, который считается широко универсальным.

Основными узлами данного оборудования являются:

передняя бабка на станке, имеющая коробку скоростей и шпиндель, и задняя бабка, оснащенная корпусом, продольной салазкой и пинолью;

суппорт – верхне- и среднеполочные, продольные нижние салазки на станке, держатель резца;

станина горизонтального плана с тумбами, в которых расположены двигатели на станке;

коробка подач на станке.

Главным критерием токарного станка считается скорость, напрямую увеличивающая производительность.

Для получения высокоточных линейных и диаметральных геометрических величин часто используются программируемые станки с ЧПУ.

Плюсами резания механизмом с ЧПУ являются:

высокая антивибрационная устойчивость;

наличие программ предварительного нагрева узлов, что снижает термическую деформацию заготовок;

отсутствие станочных приводов-зазоров в передаточных устройствах;

высокая скорость обработки;

рассекание любых металлов: чугуна, меди, титана, нержавеющей стали и др.;

обточка поверхностей любых форм: сферических, цилиндрических и т.д.

Все устройства с ЧПУ оснащены износостойкими направляющими с низкими показателями силы трения, что обеспечивает высокую точность и скорость обработки.

В устройстве с ЧПУ направляющие могут быть расположены вертикально и горизонтально.

Для максимально эффективного использования токарного устройства с ЧПУ должен быть тщательно подготовлен весь процесс и составлена программа управления.

Важным моментом является грамотное связывание системы координат механизма с ЧПУ, положение обрабатываемой заготовки и исходной точки передвижения режущего инструмента.

Основой программирования механизма с ЧПУ является движение режущего приспособления по отношению к системе координат двигателя, которая находится в состоянии покоя.

Обработка деталей механизмом с ЧПУ производится следующим образом:

Разделение процесса на 3 стадии: черновую, чистовую и дополнительную отделочную. Если есть возможность, то последние оба вида отделки нужно совместить, что увеличит производительность и снизит трудоемкость;

Соблюдение конструкторских и технологических правил для уменьшения погрешностей крепления и размещения детали;

Обеспечение полной обработки детали при минимальном количестве установок;

Рациональная работа с деталями.

Важной частью процесса резания на устройстве с ЧПУ является, так называемая, отдельная операция, подразумевающая обработку одного изделия на одном станке.

Процесс состоит из нескольких переходов, которые делятся на самостоятельные проходы.

Правильное программирование механизма с ЧПУ нуждается в разработке последовательности процесса.

Для этого нужно задать общее количество установок, количество переходов и проходов, тип обработки.

Также для резания используются такие виды станков, как токарно-револьверные, предназначенные для сложных изделий, токарно-карусельные, многорезцовые полуавтоматические, токарно-винторезные, токарно-фрезерные, лоботокарные.

Частое применение получили винторезные и карусельные станки. Отличаются карусельные станки возможностью обработки крупных заготовок, на винторезном механизме это невозможно.

В токарно-револьверном оборудовании режущие приспособления фиксируются в барабане.

Такой вид оборудования оснащается приводными блоками, расширяющими спектр работ в отличие от стандартных устройств, например сверление отверстий, нарезание резьбы, фрезеровка.

Используются подобные станки на крупных предприятиях.

С использованием токарного обрабатывающего центра выполняется токарно-фрезерная обработка в полуавтоматическом режиме.

Токарно-фрезерная обработка часто используется для титана, алюминия и других сложных в обработке материалов.

Токарная обработка металла – один из популярных методов резания любых металлов: алюминия, титана, меди, олова и других, однако осуществить такую обработку можно лишь на предприятии, что обусловлено использованием станков.

Технология резания представлена на видео в нашей статье.

Токарная обработка – популярный способ эффективной обработки металла

Токарная обработка представляет собой одну из востребованных методик обработки металлических изделий, которая предполагает удаление с них лишнего слоя. При этом на выходе деталь имеет требуемые размеры, форму и шероховатость поверхности.

1 Токарная обработка металла – общие сведения

Процедура выполняется на специальных станках, которые при помощи сверл, резцов и иных режущих приспособлений срезают на заданную величину металлический слой с заготовки. Вращение детали, подвергаемой обработке, принято именовать главным движением. А движением подачи называют постоянное перемещение инструмента, которое обеспечивает непрерывность резки изделия до запланированных параметров.

За счет того что оборудование для токарных работ может выполнять различные сочетания указанных движений, на нем есть возможность производить эффективную обработку фасонных, цилиндрических, резьбовых, конических и прочих поверхностей.

К таковым, в частности, относят:

Также токарные станки позволяют выполнять:

  • нарезание резьбы;
  • обработку растачиванием, сверлением, развертыванием и зенкерованием разных отверстий;
  • отрезание частей деталей;
  • вытачивание канавок.

При подобных видах обработки металлических изделий обязательным является использование разнообразного измерительного инструмента (предельные калибры для предприятий, занятых массовым производством или микрометры, штангенциркули, нутромеры для мелкосерийного и единичного производства). С его помощью определяются формы и размеры, а также и варианты взаиморасположения разных поверхностей обрабатываемой заготовки.

Сущность технологии обработки металлов на токарном оборудовании заключается в следующем. При врезке в деталь кромки режущего инструмента отмечается зажим изделия этой самой кромкой. При этом инструмент преодолевает силы сцепления внутри заготовки, удаляет лишний металлический слой, который превращается в мелкую стружку. Она может быть разных типов:

  • слитая: образовывается при обработке оловянных, медных, пластмассовых, свинцовых заготовок и изделий из мягких марок стали на высоких скоростях;
  • элементная: формируется при обработке на малых скоростях маловязких и твердых деталей;
  • надлом: стружка, характерная для резки малопластичных заготовок;
  • ступенчатая: появляется при обработке на средней скорости средней по твердости стали, сплавов алюминия, изделий из алюминиевых листов.

2 Обработка на токарных станках – виды используемых резцов

Эффективность работы токарных установок зависит от глубины резания, величины продольной подачи изделия для обработки и скорости резки. Именно эти показатели дают возможность достичь:

  • повышенного темпа вращения шпинделя станка и непосредственно обработки заготовки;
  • достаточную устойчивость инструмента для резки и требуемый уровень его воздействия на деталь;
  • максимально допустимый объем стружки, которая образовывается в процессе обработки;
  • поддержания поверхности станка в состоянии, необходимом для выполнения токарных работ.

Конкретная скорость резки определяется видом обрабатываемого материала, типом используемых резцов и их качеством. Показатель обточки изделий и скорость резки того или иного станка устанавливают частоту, с которой вращается его шпиндель. Плотность и прочие физические параметры деталей можно узнать из соответствующих таблиц и спецификаций изделий.

Резцы для токарных станков могут быть чистовыми и черновыми. Конкретный их вид определяется характером обработки. Геометрические размеры резцов (точнее – их режущей части) дают возможность работать с малой и большой площадью слоя, поддающегося срезанию. По направлению движения резцы делят на левые и правые. Вторые движутся при работе станка к передней его бабке от задней (то есть, справа налево), первые, соответственно, наоборот – слева направо.

По расположению лезвия и форме резцы подразделяют на:

  • оттянутые (у них ширина крепежной части выше ширины резцов);
  • прямые;
  • отогнутые.

По назначению резцы классифицируют на:

  • подрезные;
  • проходные;
  • канавочные;
  • фасонные;
  • расточные;
  • резьбовые;
  • отрезные.

Геометрия конкретного резца оказывает существенное влияние на качество резания и его точность. Производительность обработки на токарных станках повышается в том случае, когда токарь грамотно подбирает геометрию резца. Для этого ему необходимо знать, что означает понятие «углы в плане». Под таковыми понимают углы между направлением подачи и кромками резца:

  • вспомогательный – φ1;
  • главный – φ;
  • при вершине – ε.
Читать еще:  Как паять алюминий паяльником

Последний угол зависит от заточки резца, первые два – еще и от его установки. Если главный угол имеет большое значение, стойкость резца уменьшается из-за того, что фактически действует лишь малая часть кромки. При малом его значении резец является более стойким, теплота при обработке отводится более эффективно. Для нежестких тонких изделий обычно выбирают главный угол равный 60–90 градусам, для больших по сечению деталей – 30–45 градусов.

Показатель вспомогательного угла, как правило, равняется 10–30°. Большие его значения не имеют смысла, так как вершина резца будет значительно ослабляться. Для обработки (одновременно) торцовой плоскости и цилиндрической поверхности обычно применяют упорные проходные резцы. Отогнутые и обычные прямые оптимальны для наружных поверхностей заготовки, отрезные – для протачивания канавок и отрезания определенных частей детали, расточные (упорные или сквозные) – для растачивания ранее просверленных с использованием разных видов сверл отверстий.

А вот обработка фасонных поверхностей, у которых образующая линия имеет длину до 40 мм, производится при помощи фасонных резцов:

  • круглых, стержневых и призматических по конструкции;
  • тангенциальных и радиальных по движению (его направлению) подачи.

3 Токарное оборудование – виды станков

Распространенным станком, применяемым в настоящее время на многих предприятиях страны, является токарно-винторезный станок. По своим функциональным возможностям такая установка признается широкоуниверсальной, поэтому использовать ее можно не только на крупных предприятиях, но и в мелкосерийном, а также единичном производстве.

К основным узлам таких станков для токарной обработки причисляют:

  • переднюю и заднюю бабку: в передней находится коробка скоростей и шпиндель, в задней – корпус, продольные салазки, пиноль;
  • суппорт (верхне- и среднеполочные, продольные нижние салазки, держатель резца);
  • станину горизонтального плана с тумбами, в которых размещаются двигатели;
  • коробку подач.

Для обработки заготовок с целью получения особо точных линейных и диаметральных геометрических параметров чаще всего применяют программируемые станки (с ЧПУ), которые от универсальных по своей конструкции мало чем отличаются.

Другие виды станков:

  • токарно-револьверные (предназначены для работы со сложными изделиями);
  • токарно-карусельные (двух- и одностоечные);
  • многорезцовые полуавтоматические для крупносерийных и серийных производств;
  • токарно-винторезные;
  • современные обрабатывающие токарно-фрезерные комплексы.

Режимы резания при токарной обработке

При токарной обработке с заготовки за определенное число проходов снимается лишний металл, называемый припуском. В результате получается изделие заданной формы с требуемыми размерами и классом шероховатости поверхностей. В общем виде операция точения детали на токарном станке выглядит следующим образом: резец последовательно перемещается с заданной подачей вглубь металла вращающейся заготовки, при этом его режущая кромка за каждый оборот удаляет с заготовки заданную толщину металла.

Режимы резания при токарной обработке определяют на основании ряда технических показателей, среди которых самые значимые — это подача инструмента и частота вращения детали, закрепленной в шпинделе станка. Правильный выбор и применение режимов обработки гарантируют не только геометрическую точность и экономичность изготовления, но и сохранность детали, инструмента и оборудования, а также безопасность станочника.

Основные параметры

Одна из главных задач технологической подготовки производства при токарных работах — это определение рациональных режимов резания. При их расчете должны учитываться особенности обрабатываемого изделия и возможности станочного парка, а также наличие соответствующего инструмента, приспособлений и оснастки. Компоновка узлов и агрегатов токарного станка позволяет реализовать два определяющих вида движения, которые формируют заданную конфигурацию поверхностей детали: вращение заготовки (главное движение) и перемещение резца вглубь и вдоль поверхности детали (подача). Поэтому основными технологическими параметрами для токарного оборудования являются:

  • глубина резания;
  • подача и обороты шпинделя;
  • скорость резания.

Существует взаимовлияние режимов резания и основных элементов производственной экономики. Среди них самые значимые — это:

  • производительность оборудования;
  • качественные показатели производства;
  • стоимость выпускаемых изделий;
  • износ оборудования;
  • стойкость инструмента;
  • безопасность труда.

Понятие о режимах резания

Точение на предельных режимах повышает производительность токарного оборудования. Однако такая работа станков не всегда возможна и целесообразна, т.к. существуют ограничения в виде предельной мощности главного привода, жесткости и прочности обрабатываемых изделий, а также технологических параметров инструмента и оснастки.

Еще одним ограничением являются характеристики отдельных материалов. К примеру, титан и нержавеющая сталь для токарной обработки являются одними из наиболее сложных материалов и требуют особого подхода при определении параметров технологической операции.

При неправильном расчете или подборе технологических параметров работа на высоких скоростях может вызвать повышенную вибрацию и разбалансировку отдельных механизмов токарного станка. Это приводит к понижению точности и повторяемости размеров изделий. Кроме этого повышается риск поломки инструмента и выхода из строя станка.

Припуск — это толщина металла, удаляемого токарным резцом с заготовки до достижения ею чистового размера. При обточке и расточке он удаляется поэтапно за заданное число резов. Толщина металла, удаляемого за единичный проход резца, в механообработке носит название глубина резания и измеряется в миллиметрах. В технологических расчетах и таблицах этот параметр обозначают буквой t.

При операциях обточки она равна 1/2 разности диаметров перед и после обточки детали и вычисляется по формуле:

где t – глубина резания; D — диаметр заготовки; d – заданный диаметр детали.

При операциях подрезки — это размер слоя металла, удаляемого с торца заготовки за единичный проход резца, а при проточке и отрезке — глубина канавки.

В идеальном случае на удаление припуска требуется один проход резца. Но в реальности токарный процесс, как правило, включает в себя черновой и чистовой этап обработки (а для поверхностей с повышенной точностью – и получистовой). При хороших характеристиках и форме заготовки обе эти операции выполняются за два-три прохода.

Подача при токарной обработке — это длина пути при поперечном перемещении режущей кромки резца, совершаемом ей за единичный оборот шпинделя. Ее измеряют в мм/об, в технологической документации обозначают буквой S и подбирают по технологическим справочникам. Величина подачи зависит от мощности главного привода, значения t, габаритов и физических свойств обрабатываемой заготовки. При точении она рассчитывается по формуле:

Производительность токарного оборудования напрямую связана с величиной подачи.

При операции точения подача на токарном станке должна устанавливаться на максимально возможное число, но с учетом технологических параметров станка и применяемого инструмента. При операциях по черновому точению она зависит от мощности главного привода и устойчивости детали. А при чистовом точении основным критерием является заданный класс шероховатость поверхности.

Скорость резания при токарной обработке — это суммарная траектория режущей кромки резца за единицу времени. Ее размерность — в м/мин, а в таблицах и расчетах ее обозначают буквой v и подбирают по технологической документации или рассчитывают по формулам. В последнем случае расчет происходит в следующей последовательности:

  • вычисляется величина t;
  • по справочнику выбирается значение S;
  • определяется табличное значение vт;
  • рассчитывается уточненное значение vут (умножением на корректирующие коэффициенты);
  • с учетом скорости вращения шпинделя выбирается фактическое значение vф.

Этот параметр является одной из основных характеристик производительности металлорежущего оборудования и напрямую влияет на эксплуатационные режимы работы токарного станка, износ инструмента и качество обрабатываемой поверхности.

Выбор режима на практике

Расчет режимов резания при токарной обработке производится специалистами отдела главного технолога предприятия или технологического бюро цеха. Полученные результаты заносят в операционную карту, в которой приводится последовательность этапов, перечень инструмента и режимы изготовления требуемой детали на конкретном токарном станке. Заводские и цеховые технологи рассчитывают параметры технологического процесса и выбирают соответствующие инструмент и оснастку, используя конструкторские чертежи, эмпирические формулы и табличные показатели из технологических справочников. Но на практике реальные условия точения могут отличаться от нормативных по следующим причинам:

  • снижение точности оборудования в результате износа;
  • отклонения в геометрических размерах и физических характеристиках заготовки.
  • несоответствие характеристик материала расчетным.

Элементы резания при токарной обработке

Поэтому для уточнения расчетных технологических режимов применяют метод пробных проходов: точение небольших участков поверхности с подбором режимов и последующим замером геометрии и качества поверхности. Главные недостатки такой отладки технологического процесса — это возрастание трудозатрат и сверхнормативное использование производственных ресурсов. Поэтому его используют только в особых случаях:

  • единичное изготовление без операционной карты;
  • определение точности работы токарного оборудования перед запуском партии;
  • работа с неполноценными заготовками (брак и неточность размеров);
  • обточка литейных и кованых заготовок, не прошедших предварительную обдирку;
  • запуск в производство изделий из новых материалов.

При первом запуске в производство нового изделия, обрабатываемого на автоматизированном оборудовании, также производят пробное точение и подбирают вручную режимы резания. Токарный станок с ЧПУ выполняет все операции по программе, поэтому оператор не всегда может корректировать параметры его работы.

Кроме углеродистых сталей на токарном оборудовании обрабатывают такие металлы как легированная сталь, чугун, титан, сплавы алюминия, бронза и другие сплавы меди. Помимо этого, такую обработку используют для точения материалов с низкой температурой плавления и воспламенения, таких как пластики и дерево. При работе с пластмассами токарные станки чаще всего применяют при обработке деталей из фоторопласта, полистирола, полиуретана, оргстекла, текстолита, а также эпоксидных и карбомидовых композитов. Все перечисленные группы материалов имеют свои особенности расчета и практического применения режимов точения. Это хорошо видно на примере токарной обработки нержавейки — самого распространенного после углеродистой стали конструкционного материала.

Читать еще:  Искусственное ржавление металла

Нержавеющая сталь характеризуется низкой теплопроводностью, вязкостью, коррозионной стойкостью, сохранением прочности и твердости при высоких температурах, а также неравномерным упрочнением. Кроме того, в состав некоторых сортов нержавеющей стали входят легирующие добавки повышенной твердости с абразивными характеристиками. Поэтому при работе с ней на практике применяют специальные режимы точения и методы охлаждения и смазки детали.

Обработка нержавейки ведется на повышенных оборотах при уменьшенной подаче. Высокая вязкость этого материала способствует созданию непрерывной вьющейся стружки.

Для решения этой проблемы применяют резцы со стружколомом. Для отвода тепла и смазки обрабатываемой поверхности в рабочую зону подается специальная СОЖ (смазочно-охлаждающей жидкости) на основе олеиновой кислоты. Это уменьшает нагрев заготовки и снижает износ резца. В последнее время все чаще применяют современные методы, которые также уменьшают износ инструмента: направление в рабочую зону ультразвуковых волн и подвод к металлу слаботочных импульсов.

Вычисление скорости резания

Время точения металла (tосн, основное время) — самая затратная составляющая в суммарном времени изготовления единичного изделия. Поэтому от скорости выполнения этой технологической операции напрямую зависит экономическая эффективность использования токарного оборудования. Правильный расчет скорости резания при токарной обработке важен не только с точки зрения стоимостных показателей производственной операции. Ошибки в расчете и применении этого параметра может привести не только к браку детали, но и к повреждению токарного оборудования, оснастки и инструмента. Далее приводится последовательность расчета этого показателя для самой распространенной операции — обточки цилиндрической поверхности.

Основные факторы, влияющие на скорость резания

Скорость резания v имеет размерность м/мин и в общем виде вычисляется по формуле:

где D — диаметр заготовки в мм; n — скорость шпинделя в об/мин.

Но на токарном оборудовании невозможно количественно задать v в качестве параметра управления. При работе на токарных станках предусмотрена регулировка только оборотов шпинделя и подачи инструмента, которые зависит не только от значения v, но и от ряда других факторов: материала детали, мощности главного привода, вида точения и характеристик режущего инструмента. Поэтому при расчете режимов в первую очередь определяют расчетные обороты шпинделя:

На основании полученного результата по таблицам справочной литературе выбирают соответствующее значение v, которое зависит глубины точения, подачи, материала, типа резца и вида операции.

Для расчета теоретической глубины резания t на основании чертежа определяют размерные характеристики детали и заготовки, а затем с учетом геометрических параметров инструмента вычисляют ее по формуле:

где D — диаметр заготовки; d – конечный диаметр детали.

После вычисления величины t по справочникам определяют табличное значение подачи S в мм/об. В справочных таблицах учтены: вид материала (различные стали, бронза, чугун, титан, алюминиевые сплавы), тип точения (черновое, чистовое), параметры резца и геометрия его подхода к обрабатываемой поверхности. Затем по технологическим таблицам на основании полученных величин t и S определяют vτ — табличное значение скорости резания.

Далее vτ должна быть скорректирована в соответствии с реальными условиями точения, к которым относят: период стойкости и технические параметры резца, прочностные характеристики материала, физическое состояние обрабатываемых поверхностей, геометрия резания.

Корректировка vт осуществляется с помощью группы поправочных коэффициентов:

где vут — уточненная скорость резания; K1 — коэффициент, зависящий от времени работы резца; K2, K4 — коэффициенты, зависящие от технических параметров резца; K3 — коэффициент, зависящий от состояния обрабатываемой поверхности; K4 — коэффициент, зависящий от материала резца; K5 — коэффициент, зависящий от геометрии обработки.

После расчета vут вычисляют уточненную скорость вращения шпинделя nут по следующей формуле:

Значение nут должно лежать в диапазоне паспортных скоростей главного привода станка, которые приведены в заводской документации токарного оборудования. Если полученная в результате расчетов nут не имеет точного соответствия в таблицах станка, то необходимо применить ближайшее самое меньшее число.

Формулы для токарной обработки

На последнем этапе рассчитывают фактическую скорость резания vф:

Vф напрямую связана с мощностью главного двигателя станка. Поэтому она является основным параметром при выборе конкретного типа токарного станка для обработки требуемой детали.

Резание как способ обработки тугоплавких материалов

Тугоплавкий материал обычно обрабатывается резанием. Исходя из этого выделяется три категории материала:

  1. вольфрам и его сплавы;
  2. хром, молибден, их сплавы;
  3. ниобий, тантал, ванадий.

Одним из тугоплавких материалов является вольфрам. Поэтому все сплавы, сделанные из вольфрама очень твердые, прочные и устойчивые. Показатель прочности при растяжении до 1400 МН/м2 , показатели твердости – до НВ 490.

Вольфрам довольной хрупкий, твердый, теплоустойчивый материал. Также этот материал хорошо поддается шлифовке. Но все эти свойства вольфрама снижают возможности обработки резанием.

К еще одной из отрицательных черт вольфрама можно отнести предрасположенность к появлению нестойких окисных пленок. Все эти отрицательные свойства влияют на качество изделий из данного материала – они очень скоро теряют свою остроту и могут окрашивать обрабатываемую поверхность.

Исходя из всех возможных проблем, во время резания вольфрама используют очень острый инструмент, изготовленный из твердого сплава. Обязательно должны быть большие показатели передних углов инструмента.

Во время обработки вольфрама способом резания, появляется стружка. Стружка образуется в ходе слабого разрушения. И та часть поверхности, которая подвергается обработке, отличается примечательной шершавостью. Мелко-дробленная стружка образуется при резании вольфрама на низких скоростях. При этом его плотность не должна быть меньше 85%. Как только скорость резания возрастает, поверхность становится гладкой, а стружка непрерывной. Негилированный, плотный вольфрам обрабатывается на токарных станках с помощью твердых, сплавных резцов. Для обработки чаще всего применяются режимы резания:

  • черновая обработка S=0,25. 0,3 мм/об, V= 46. 61 м/мин;
  • чистовая обработка– S=0,18. 0,23 мм/об, V= 61. 91 м/мин.

Насколько удачна будет обработка вольфрама, зависит от выбора вида воздействия. Ведь из-за его повышенной хрупкости часто появляются расколы и трещины на деталях. Особенно часто такое случается при фрезеровании. Все, что связано с ударными силами, негативно влияют на поверхность деталей. Необходимо обрабатывать вольфрам на маленькой глубине резания (t=1,5 мм). Если обработку проводить на большой глубине, то верх инструмента быстро изнашивается. Этот износ происходит из-за высокого радиального компонента.

Чтобы улучшить результаты обработки, рекомендуется подогреть вольфрам до 300. 400°С. Такой способ повышает пластичность материала. Это позволяет избежать потрескиваний, выкрашиваний и увеличивает срок службы резцов.

Плохо поддается обработке резаньем и молибден. Хотя по сравнению с вольфрамом, он считается более гибким и пластичным. При обработке молибдена выбор охлаждающих жидкостей сводится к минимуму. Это происходи по причине его слишком высокой химической активности. Молибден отлично вступает в реакцию с осерненными маслами. Хлорированное масло с трихлорэтиленом в пропорции 1/1 дает отличные результаты при резании молибдена. Обязательно соблюдайте меры предосторожности при работе с подобной смесью. Выделяемые пары токсичны и опасны для человека. Если во время обработки использовать 10%-ный раствор эмульсола, поверхность станет менее шероховатой и твердость резцов увеличится. Если обработку проводить на небольшой скорости, то поверхность детали становится шероховатой. При использовании больших скоростей увеличивается вероятность поломки инструмента. Поэтому рекомендуется использовать оптимальную скорость обработки.

Ниобий по своим характеристикам напоминает медь. Он также пластичен и легко поддается обработке резаньем. Но прочным его назвать нельзя. При соприкосновении с рабочей поверхностью ниобий наволакивается и схватывается с ней. Такое взаимодействие с поверхностью повышает силу трения, увеличивает прочность и температуру в месте резания детали. В связи с этим уменьшается надежность инструмента, и на поверхности детали появляются шероховатости. Для обточки ниобия следует использовать следующие резцы из сплавов:

  • при черновой обработке ВК6М и Р18 с γ=25°, α=15°, φ=60°, φ1=10° и λ=0° при V=50 м/мин, S=0,2. 0,3 мм/об;
  • при чистовой меньше s=0,125 мм/об

Устойчивым к высоким температурам являются бориды тугоплавких металлов (ZrB2-Mo, TiB2-Mo, TiB2-Cr). Но несмотря на их жаростойкость, они достаточно хрупкие и плохо выдерживают тепловые удары. Для успешной обработки боридов резаньем необходимо учитывать их высокую твердость повышенную хрупкость. Для успешного результата обработки лучше всего применять шлифовку. Обработка резанием с использованием абразивов также показывает неплохие результаты. Для повышения качества обработки боридов применяется ультразвук и анодно-механическая обработка. Если использовать –ультразвуковой генератор мощностью 600 Вт, то эффективность обработки боридов равна 20. 30 мм3/мин. А при обработке твердым сплавом ВК8 эффективность составляет 6. 8 мм3/мин.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]