Содержание
- Трехфазный регулятор мощности своими руками
- Схема регулятора
- Органы управления
- Основные параметры
- Трехфазный регулятор мощности своими руками
- Простой регулятор мощности 3,5 кВт
- Мощный симисторный регулятор мощности
- Как сделать своими руками регулятор мощности: схемы, принцип работы, основные элементы и особенности сборки (85 фото и видео)
- Идеи автоматизации двигают прогресс
- Принцип работы симисторного регулятора мощности
- Схема регулятора мощности своими руками
- Инструкция, как сделать регулятор мощности
- Порядок выполнения работ
- Припаиваем по схеме провода питания
- Симисторный регулятор мощности
Трехфазный регулятор мощности своими руками
Трехфазный регулятор мощности своими руками
Цифровой регулятор мощности для 3 фазного мотора переменного тока выполнен с использованием специальной микросхемы MC3PHAC от фирмы NXP Semiconductor. Она генерирует 6 ШИМ-сигналов для 3 фазного двигателя переменного тока. Блок легко совмещается с мощным 3 фазным IGBT/MOSFET ключевым приводом. Плата обеспечивает 6 ШИМ сигналов для IPM или IGBT инвертора, а также сигнал торможения. Схема работает в автономном режиме и не требует программирования и кодирования.
Схема регулятора
Органы управления
- PR1: Потенциометр для установки ускорения
- PR2: Потенциометр для регулировки скорости
- SW1: Переключатель DIPX4 для установки частот 60Hz/50Hz и установки выхода активный низкий / активный высокий
- SW2: Переключатель сброса
- SW3: Старт / стоп мотор
- SW4: изменить направление двигателя
Основные параметры
- Питание драйвера 7-15 В постоянного тока
- Потенциометр для управления скоростью двигателя
- Частота ШИМ по умолчанию 10.582 кГц (5.291 кГц – 164 кГц)
М/с MC3PHAC — это монолитный интеллектуальный контроллер, разработанный специально для удовлетворения потребности в недорогих 3-фазных системах управления электродвигателем переменного тока с регулировкой скорости вращения. Устройство адаптируется и настраивается в зависимости от его параметров. Оно содержит все активные функции, необходимые для реализации части управления с открытым контуром. Всё это делает MC3PHAC идеально подходящей для устройств, требующих поддержки управления двигателем переменного тока.
В состав MC3PHAC входят защитные функции, состоящие из контроля напряжения шины постоянного тока и входа неисправности системы, которые немедленно отключат модуль ШИМ при обнаружении неисправности системы.
Все выходные сигналы TTL уровня. Вход для блока питания 5-15 В постоянного тока, постоянное напряжение на шине должно быть в пределах 1.75 — 4,75 вольта, DIP-переключатель предусмотрен на плате для установки под двигатели с частотой 60 или 50 Гц, перемычки помогают установить полярность выходного ШИМ-сигнала, то есть активный низкий или активный высокий уровень, что позволяет использовать эту плату в любом модуле, так как выход можно установить активный низкий или высокий. Потенциометр PR2 помогает регулировать скорость двигателя. Для изменения базовой частоты, времени отключения ШИМ, других возможных параметров — изучайте даташит. Файлы платы — в архиве
Управление скоростью. Синхронная частота электродвигателя может быть задана в режиме реального времени для любого значения от 1 Гц до 128 Гц регулировкой потенциометра PR2. Коэффициент масштабирования составляет 25,6 Гц на вольт. Обработка 24-битным цифровым фильтром для того чтобы увеличить стабильность скорости.
Управление ускорением. Ускорение двигателя может быть задано в режиме реального времени в диапазоне от 0,5 Гц/сек до 128 Гц/сек, путем регулировки потенциометра PR1. Коэффициент масштабирования составляет 25,6 Гц/секунду на вольт.
Защита. При возникновении неисправности MC3PHAC немедленно отключает ШИМ и ожидает, пока условие неисправности не будет устранено перед запуском таймера для повторного включения. В автономном режиме этот интервал времени ожидания задается на этапе инициализации путем подачи напряжения на вывод MUX_IN, в то время как вывод RETRY_TxD управляется на низком уровне. Таким образом, время повтора может быть указано от 1 до 60 секунд с коэффициентом масштабирования 12 секунд на вольт.
Контроль внешних неисправностей. Вывод FAULTIN принимает цифровой сигнал, указывающий на неисправность, обнаруженную с помощью внешних цепей мониторинга. Высокий уровень на этом входе приводит к немедленному отключению ШИМ. Как только этот вход возвращается к низкому уровню логики, таймер повтора сбоя начинает работать, и ШИМ повторно включается после достижения запрограммированного значения тайм-аута. Входной контакт 9 разъема CN3 FLTIN должен быть с высоким потенциалом.
Мониторинг целостности напряжения (входной сигнал pin 10 в cn3) в DC_BUS отслеживается на частоте 5.3 кГц (4.0 кГц, если частота ШИМ имеет значение до 15,9 кГц). В автономном режиме пороги фиксируются на 4.47 вольт (128% от номинальной), и 1,75 вольт (50% от номинальной), где номинальное значение определяется в 3,5 вольт. Как только уровень сигнала DC_BUS возвращается к значению в пределах допустимого — таймер повтора сбоя начинает работать, и ШИМ снова включается после достижения запрограммированного значения тайм-аута.
Регенерация. Процесс экономии, с помощью которого сохраненная механическая энергия в двигателе и нагрузке переносятся обратно в привод электроники, происходит это как правило, в результате принудительного замедления. В особых случаях, когда этот процесс происходит часто (например, системы управления двигателями лифтов), он включает специальные функции, чтобы позволить этой энергии перейти обратно в сеть переменного тока. Однако для большинства недорогих приводов переменного тока эта энергия сохраняется в конденсаторе шины постоянного тока за счет увеличения ее напряжения. Если этот процесс не установлен, напряжение шины постоянного тока может подниматься до опасного уровня, что может привести к порче конденсатора шины или транзисторов в инверторе питания. MC3PHAC позволяет автоматизировать и стабилизировать этот процесс.
Резистивное торможение. DC_BUS пин-код отслеживается на 5.3 кГц (4.0 кГц, если частота ШИМ имеет значение до 15,9 кГц), и когда напряжение достигает определенного порога, RBRAKE контакт примет высокий потенциал. Этот сигнал может использоваться для управления резистивным тормозом, размещенным через конденсатор шины постоянного тока, таким образом, механическая энергия от двигателя будет рассеиваться в виде тепла в резисторе. В автономном режиме порог DC_BUS, необходимый для подтверждения сигнала RBRAKE, зафиксирован на уровне 3,85 вольта (110 % номинала), где номинал определяется как 3,5 вольта.
Выбор частоты ШИМ. У MC3PHAC имеется четырех дискретных частоты ШИМ, которые могут быть динамически изменены во время вращения электродвигателя. Этот резистор может быть потенциометром или фиксированным резистором в диапазоне, показанном в таблице. Частота ШИМ определяется подачей напряжения на контакт MUX_IN в то время как контакт ШИМ FREQ_RxD управляется низким потенциалом.
Трехфазный регулятор мощности своими руками
Группа: Cоучастник
Сообщений: 4
Пользователь №: 86197
Регистрация: 31-October 11
Сделал я трёхфазный тиристорный регулируемый блок питания на 100 кВт.
Дело в том, что схему трёхфазного тиристорного регулятора мне не удалось найти ни в Интернете, ни в тех справочниках, что удалось найти, поэтому пришлось выдумывать её на основе однофазной.
Но вот проблема — горят регуляторы.
Исходная однофазная схема
Однофазная схема, на основе которой он собран, работает нормально.
Принцип работы однофазной схемы
Через резистор R5 заряжаются конденсаторы С1, С2. Но только на одном из них будет такая полярность напряжения, что откроется динистор, конечно, при определенном напряжении между выводами конденсатора. Когда на верхнем по схеме контакте разъёма Х1 положительный полупериод напряжения, это будет конденсатор С2 и динистор V4. В цепи управляющего электрода тринистора V2 потечет импульс тока разряда конденсатора. Тринистор откроется, подаст напряжение на нагрузку и одновременно разрядит другой конденсатор. При отрицательном полупериоде напряжения на том же контакте сетевого разъёма включится другой динистор, а вслед за ним откроется тринистор V1.
Таким образом, тринисторы будут открываться поочередно. Сдвиг фазы открывающего напряжения на управляющих электродах осуществляется переменным резистором, причем наибольший сдвиг будет при максимальном сопротивлении резистора.
Динисторы выполняют роль электронных ключей, срабатывающих при определенном напряжении на конденсаторах. Применение динисторов позволяет добиться чёткого срабатывания тринисторов при одинаковом сдвиге фазы независимо от их параметров.
Резисторы R1 и R2 ограничивают ток через управляющий электрод.
Наличие конденсаторов позволяет понижать мощность более чем в 2 раза. Это становится возможным потому, что после прохождения пика полуволны напряжения конденсатор продолжает заряжаться, а поскольку динистору КН102А для открывания нужно 20 В, открывание может производиться вблизи конца полуволны.
Вместо динистора КН102А можно установить КН102Б или КН102В, но при этом желательно несколько уменьшить емкость конденсаторов – до 0,2 или 0,15 мкФ соответственно. Номинальное напряжение конденсаторов должно быть не ниже 400 В. Постоянные резисторы – МЛТ-0,5, переменный – СП3-4. Максимальная мощность нагрузки зависит только от используемых тринисторов. Данный регулятор позволяет менять напряжения от 15 до 215 В.
Каждая треть трёхфазной схемы в однофазном режиме тоже работает нормально. Подаю 3 фазы — из регулятора дым идёт, хотя он четырёхканальный.
Тиристоры SKKT 253/16 (даташит внизу), диоды SKKD 260/12, конденсаторы керамические на 2 кВ.
Ввиду отсутствия КН102А установлены симметричные DB3.
Переменный резистор четырёхканальный RTT-16-05C100K, представляет собой 4 независимых резистора, посаженные на общий вал, 3 из четырёх включены в схему.
Испытания трёхфазной схемы проводились с двумя лампами накаливания 220 В по 500 Вт каждая, соединёнными последовательно.
При подаче только одной фазы каждый канал трёхфазной схемы по отдельности регулирует нормально. Но при подаче трёх фаз и установлении сопротивления близкого к минимальному, начинают гореть регуляторы, ещё чуть меньше и резко включаются лампы. Хотя в процессе горения они ещё некоторое время продолжают регулировать. При увеличении сопротивления от нуля лампы сначала несколько притухают, и когда светимость составляет примерно 90% от максимума, резко гаснут, что типично для тиристорного регулятора и обусловлено током удержания. Если снова уменьшить сопротивление, лампы снова ярко включаются и регулируются. Конечно, похоже, что напряжение регулируется только резистором без тиристора, но если бы ток шёл только через резисторы, лампы светились бы и в полнакала и меньше, но они регулируются только от 90 до 100% яркости. Да и регуляторы начинают трещать при чуть большем сопротивлении, чем включаются лампы. Получается, тиристоры управляются.
Купили бы готовый блок питания, но на такую мощность все они с низким напряжением, 30-40 Вольт, а нам надо хотя бы 100 В, а лучше до 200 В.
Видимо дело в переменных резисторах, поскольку их максимальное рабочее напряжение, как оказалось, 200 В. А здесь только действующее 380, а пиковое ещё больше. А при выключенных лампах не горят видимо потому, что витков в нём при этом включено много, и между соседними получается напряжение ниже. Других 3-канальных резисторов с допустимым напряжением более 200 В найти нигде невозможно.
Решение я вижу в следующем
Регулировать скорость зарядки конденсаторов с помощью высоковольтных транзисторов, которые приоткрывать через резисторы. Вот есть такая схема транзисторного регулятора.
Схема взята из журнала «Моделист-конструктор» 1990 №4 стр.21. Хотя в ней похоже глюк, там регулировочный резистор R1 шунтирует на себя мост, видимо должен последовательно стоять между плюсом и базой, не соединяясь с минусом. Но это ладно. Тут тоже проблема. Опять однофазная схема. Трёхканальных резисторов менее чем на 50 кОм нигде в продаже нету, а по схеме нужно 680 Ом. Как регулировать 3 транзистора на разных фазах одним одноканальным резистором я тоже не могу придумать, видимо никак, хотя это решило бы все мои проблемы. И схемы трёхфазного транзисторного регулятора так же нигде в Интернете нет.
Поэтому сейчас ничего не остается, как поставить транзисторы, 3 переменника одноканальных на переднюю панель и соединить их шестернями. Изврат, конечно, но ничего лучше не могу придумать. Засада получилась с напряжением этих резисторов.
Может подскажете выход?
Или может видели где-нибудь как сделать тиристорное регулирование трёхфазного напряжения?
Или поймёте как одним резистором регулировать 3 транзистора на разных фазах?
А то у нас а без этого блока производство стоит.
Простой регулятор мощности 3,5 кВт
Часто возникает необходимость регулировать мощность электрического тока. Например, что бы убавить напряжение электролампы и тем самым продлить ей срок службы или плавно менять частоту вращения электродвигателя, так же не лишним будет регулировка температуры жала паяльника и т.д. и т.п. Продолжать можно долго. Выход, конечно, есть, это может быть балластный резистор, ЛАТР, балластный конденсатор, но гораздо более эффективен, на мой взгляд, симисторный регулятор. В энергопотребителях не слишком критичных к форме питающего напряжения это наилучший выбор.
Сразу скажу, что я не большой специалист в данном вопросе, поэтому воспользовавшись интернетом, я был неприятно поражён сложными схемами управления симисторов. Предлагаемые схемы содержат слишком много деталей и, по-моему, устарели. Скажем, зачем городить схемы на транзисторах или микросхемах, когда существуют дешёвые и надёжные динисторы. Допустим симметричный (двунаправленный), динистор DB3 стоит в моём уральском городке всего три рубля. При сегодняшних ценах это даже смешно. А преимуществ, по сравнению с транзисторными схемами, где транзисторы работают в режиме обратимого пробоя (лавинообразно отпирающаяся транзисторная схема), много. Я уже не говорю о микросхемах. Для простого регулятора собирать подобные схемы невыгодно ни в плане экономии средств, ни в плане экономии времени, да и заморачиваться лишний раз не охота. Предлагаемая схема проста, надёжна и доступна для повторения. Собрать её сможет даже человек, не обладающий элементарными базовыми знаниями в электронике.
Современная элементная база позволяет собрать такую схему буквально из нескольких деталей (ушло несколько вечеров, причем львиную часть времени потратил на корпус и слесарку)! Привожу переднюю панель и фото самого регулятора. В продаже такой стоит более 100 баксов. А промышленный прибор легко переваливает за 400 баксов!
Он может пригодиться для регулировки освещения ламп накаливания, регулировки температуры ТЭНов, фенов, тепловых пушек, но не годится для работы на индуктивную ( трансформатор, асинхронный двигатель) или емкостную нагрузку. Симистор моментально выходит из строя.
На всякий случай поясню назначение деталей. Т1 – это симистор, в моём случае я использовал КУ 208, хотя возможно подключить и импортные симисторы (триаки) ВТА, ВТВ, ВТ. Элемент схемы Т – это и есть вышеупомянутый симметричный динистор (диак) импортного производства DB 3 (можно DB 4). По размеру он очень мал, что делает монтаж его очень удобным, я например, в некоторых случаях припаивал его непосредственно к управляющему выводу симистора. Выглядит он так:
Резистор 510.Оm – ограничивает максимальное напряжение на конденсатор 0,1 mkF, то есть если движок переменного резистора поставить в положение 0.Оm, то сопротивление цепи всё равно будет 510.Оm
Справа на схеме резистор на 20 kOm и конденсатор 0.22mkF именуемая RC цепью. RC цепочка, это своеобразная защита симистора от выбросов напряжения при работе на индуктивную нагрузку. То есть если Ваша схема будет регулировать активную нагрузку (лампочка, паяльник, ТЭН и т.д.), то R3 и C можно исключить из схемы, а это делает схему до смешного простой.
Итак, конденсатор 0,1mkF заряжается через резисторы 510.Om и переменный резистор 420kOm, после того, как напряжение на конденсаторе достигнет напряжения открывания динистора DB 3, динистор формирует импульс, открывающий симистор, после чего, при проходе синусоиды, симистор закрывается. Частота открывания-закрывания симистора зависит от напряжения на конденсаторе 0.1 mkF, которое, в свою очередь, зависит от сопротивления переменного резистора. Таким образом, прерывая ток (с большой частотой) схема регулирует мощность в нагрузке. Допустим, если подключить электролампу через диод, мы заставим работать её «в полнакала» и продлим её жизнь, однако не получиться регулировать яркость, да и неприятного мерцания не избежать. Этого недостатка нет в симисторных схемах, так как частота переключения сисмистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. При работе на индуктивную нагрузку, например электродвигатель, можно услышать своеобразное «пение», это частота с которой симистор подключает нагрузку к цепи.
Скажу для тех, кто не знает: электродрели прочий электроинструмент с регулировкой вращения так же использует симисторные схемы. Правда, двигатели в вышеперечисленном коллекторные. Но данная схема была испытана и с асинхронным двигателем 220 V(вытяжка в мастерской) и результат был отличный.
Мощный симисторный регулятор мощности
Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.
Схема мощного симисторного регулятора мощности
Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.
В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?
В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.
Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.
Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А. Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами. Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.
Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше. И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.
Для сведения, медный провод сечением 2.5мм 2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.
Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.
Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см 2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов. Температура достигла 90 0 С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу. Иначе получим настоящую печь.
Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.
Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.
Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.
Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.
Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.
О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.
Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.
В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм 2 .
Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.
Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.
Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».
Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.
Выводы симистора, при его монтаже, рекомендуется делать как можно короче.
Вывод.
Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…
Печатная плата регулятора мощности СКАЧАТЬ
Как сделать своими руками регулятор мощности: схемы, принцип работы, основные элементы и особенности сборки (85 фото и видео)
Электроника – интересная, увлекательная и полезная наука. Всё, что нас окружает, чем пользуемся в быту, офисе, производстве, основано на управлении электронными приборами.
Люди разных возрастов (от 7 до 70 лет), увлеченные электроникой, приносят пользу человечеству, изобретая, конструируя, создавая приборы управления, гаджеты, вычислительную технику, телевизоры, музыкальные центры, аппаратуру связи и управления космической техникой и многое другое.
Бил Гейтс и Марк Цукерберг, Борис Евсеевич Черток и Николай Алексеевич Пилюгин, Александр Степанович Попов и Владимир Кузьмич Зворыкин – великие электронщики, создавшие мощную инфраструктуру, без которой современная жизнь немыслима.
Краткое содержимое статьи:
Идеи автоматизации двигают прогресс
Одним из разделов электроники является автоматизация и управление электронными и электрическими приборами.
Широкое применение имеют коммутационные приборы – тиристоры, разделяющиеся на типы:
- кремниевый управляемый выпрямитель;
- тетроидный тиристор;
- симметричный (двунаправленный) триодный тиристор или симистор;
- диодный тиристор – динистор;
- симметричный динистор.
В различных бытовых приборах и электрических инструментах для регулировки мощности используется симисторный регулятор мощности.
Принцип работы симисторного регулятора мощности
Принцип работы симисторного регулятора мощности состоит в уникальных свойствах симистора, работающего как управляемое реле.
Симистор представляет собой два кремниевых управляемых выпрямителя (КУВ), включенных встречно, что позволяет протекать току в обоих направлениях и использовать симистор для коммутации и передаче переменного тока.
Симистор имеет три вывода, два из которых основные (силовые), обозначаются Т1; Т2 или ОВ1; ОВ2, третий – управляющий, обозначается УЭ или G.
Когда управляющий вывод обесточен, на основных выводах напряжение отсутствует, так как КУВы запирают электрическую цепь.
При подаче напряжения на управляющий вывод оба КУВа открываются, и через симистор протекает переменный ток.
Применяется симистор в различных устройствах:
- переключатель для включения электрической нагрузки;
- регуляторы:
- яркости света;
- скорости вращения электродвигателя;
- мощности.
Схема регулятора мощности своими руками
Регулятор мощности просто сделать на тиристоре или симисторе своими руками. Тиристор пропускает ток в одном направлении и работает как пускатель.
Достоинства перед последним в том, что нет искрения в контактной группе, потому что тиристор прибор полупроводниковый бесконтактный.
Симистор, как уже говорилось, пропускает переменный ток и в зависимости от величины напряжения на управляющем входе регулирует напряжение на выходе схемы, в которую включен.
Схемы регулятора мощности можно найти в Интернете и выбрать по своим требованиям.
Инструкция, как сделать регулятор мощности
Для изготовления регулятора мощности понадобятся:
- радиодетали в соответствии с применяемой схемой;
- печатная плата;
- корпус для будущего устройства;
- паяльник;
- пинцет;
- бокорезы;
- держатель для монтажной платы;
- игла;
- кисточка;
- хлористое железо для травления печатной платы;
- припой;
- канифоль или флюс.
Корпус, в зависимости от фантазии конструктора можно склеить из пластика по размерам изделия, можно подобрать готовые корпуса от розеток, тройников или встроить устройство в инструмент, для которого делается регулятор.
Порядок выполнения работ
В первую очередь готовится печатная плата из куска фольгированного текстолита. На приобретенном куске текстолита размечаем расположение элементов схемы, отмечаем необходимые размеры платы и вырезаем её.
Обезжириваем фольгу, чистим мелкой шкуркой, рисуем карандашом монтажную схему регулятора, соответствующую принципиальной.
Лаком (можно лаком для ногтей) обводим карандашный рисунок. После высыхания лака опускаем плату в ванночку с хлористым железом и вытравливаем медную фольгу не участвующую в работе схемы.
В местах установки элементов схемы сверлим отверстия, наносим на остатки фольги пленку флюса и лудим дорожки и площадки, создавая токоведущие соединения. По готовности платы к установке элементов заканчиваем монтаж их установкой и впаиванием.
Устанавливаем симистор или тиристор на радиаторе для отвода тепла.
Припаиваем по схеме провода питания
Перед первым включением необходимо прозвонить всю схему и убедиться в том, что она собрана правильно. Убедившись в правильной сборке, подключаем на выход нагрузку. Наглядной нагрузкой для определения правильности работы регулятора может служить лампочка.
Изменяя положение ползунка потенциометра, убеждаемся в изменении интенсивности свечения лампы.
Схема работает и её можно использовать для регулировки мощности любой нагрузки.
Симисторный регулятор мощности
Простейший симисторный регулятор мощности состоит из симистора, переменного резистора и емкости (конденсатора).
Работает схема следующим образом. При включении устройства в сеть начинает заряжаться конденсатор.
Когда напряжение на нем достигнет напряжения открывания симистора, на выход схемы поступает импульс положительной или отрицательной полярности в соответствии с поступившей на вход полуволной. При переходе синусоиды входного тока через ноль симистор закрывается.
Переменный резистор и емкость образуют RC-цепочку, формирующую величину отсечки, т.е. время между двумя импульсами тока на выходе схемы. Чем больше их величины, тем больше величина отсечки и меньше ток, протекающий через нагрузку.
Применение регуляторов мощности на симисторе вместо переменного резистора, подключенного последовательно с нагрузкой, снижает потребление электроэнергии и повышает долгосрочность работы устройства.