Содержание
- Выбор режима сварки
- Режимы сварки
- Параметры режима сварки
- Технология ручной дуговой сварки Ч.2 Выбор режима ручной дуговой сварки
- Основные и дополнительные параметры режима сварки
- Выбор диаметра электрода при ручной дуговой сварке
- Выбор сварочного тока при ручной дуговой сварке
- Напряжение и скорость при ручной дуговой сварке
- Технология ручной дуговой сварки
- Как новичку выбрать силу сварочного тока. Простая инструкция.
- Как выбрать сварочный ток. Общая информация.
- Как выбрать сварочный ток в зависимости от диаметра электрода
- Сила сварочного тока на инверторах
Выбор режима сварки при ручной электродуговой сварке
Выбор режима сварки
Под режимом сварки понимают совокупность факторов, определяющих протекание процесса сварки. Эти факторы называются элементами режима. Основными элементами режима дуговой сварки являются: ток, род и полярность тока, диаметр электрода, напряжение дуги и скорость сварки. При ручной сварке к ним добавляется величина поперечного перемещения конца электрода. Остальные факторы — вылет (длина) электрода, свойства покрытия, начальная температура металла, наклон электрода и основного металла, — являются дополнительными элементами режима сварки.
Влияние элементов режима сварки на размеры и форму шва.
Размеры шва и форма провара не зависят от типа шва (валиковый шов, угловой, стыковой, сварка без разделки и зазора, сварка с разделкой и зазором), а определяются в основном режимом сварки. Основным показателем формы шва является коэффициент формы провара, представляющий отношение ширины шва к глубине провара. При дуговой сварке и наплавке он может изменяться в широких пределах — от 0,8 до 20. Уменьшение ширины шва и увеличение глубины провара уменьшает коэффициент формы провара, а противоположное изменение этих величин — увеличивает его.
В ел и ч и н а т о к а. Увеличение тока увеличивает, а уменьшение— уменьшает глубину провара. При глубине провара более 0,7—0,8 толщины металла резко изменяются условия отвода тепла от нижней части сварочной ванны и может произойти сквозное проплавление металла. Чем больше плотность металла (чем тяжелее металл), тем больше провар при данном токе. На ширину шва величина тока почти не оказывает влияния.
Род и полярность тока. При сварке постоянным током прямой полярности глубина провара меньше на 40—50%, а при сварке переменным током — меньше на 15—20%, чем при сварке постоянным током обратной полярности. Ширина шва при сварке постоянным током прямой полярности меньше, чем при сварке постоянным током обратной полярности и переменным током. Изменение ширины шва становится заметным при более высоких напряжениях дуги (свыше 30 в).
Диаметр электрода. Уменьшение диаметра при том же токе повышает плотность тока в электроде и уменьшает подвижность дуги, что увеличивает глубину провара и сокращает ширину шва. Соответственно, при уменьшении диаметра электрода глубина провара возрастает; ширина же шва с увеличением диаметра электрода увеличивается за счет повышения подвижности дуги. Заданная глубина провара может быть достигнута и при меньшем токе за счет уменьшения диаметра электрода, однако это вызывает затруднения вследствие повышенного разогрева электрода малого диаметра.
Напряжение дуги почти не оказывает влияния на глубину провара, но влияет на ширину шва. При возрастании напряжения ширина шва увеличивается, при снижении напряжения — уменьшается, что широко используется при механизированных способах сварки для регулирования ширины шва особенно при наплавке.
При ручной сварке напряжение изменяется незначительно (от 18 до 22 в), что не оказывает практического влияния на ширину шва.
Скорость сварки. При малых скоростях ручной сварки, составляющих 1 —1,5 м/ч, глубина провара получается минимальной, так как в этом случае интенсивность вытеснения жидкого металла сварочной ванны из-под основания столба дуги невелика. Образующийся у основания дуги слой жидкого металла препятствует проплавлению основного металла. Повышение скорости сварки до некоторого значения, соответствующего максимальной погонной энергии дуги, увеличивает глубину провара. Для практических пределов применяемых при сварке режимов скорость сварки незначительно влияет на глубину провара.
Ширина шва зависит от скорости сварки: увеличение скорости уменьшает, а уменьшение скорости — увеличивает ширину шва. Это соотношение сохраняется при всех скоростях сварки и широко используется в практике для регулирования ширины шва.
Поперечное перемещение электрода сильно влияет на глубину провара и ширину шва, поэтому его широко используют при ручной сварке для регулирования формы шва. Увеличение ширины поперечных перемещений конца электрода увеличивает ширину шва и уменьшает глубину провара, и наоборот. Это связано с соответствующим изменением концентрации тепла дуги на металле.
Длина (вылет) электрода. При увеличении длины электрода (или его вылета) он больше нагревается и скорость плавления его возрастает, что приводит к уменьшению тока и глубины провара. Если диаметр проволоки более 3 мм, изменение вылета ±6—8 мм не оказывает влияния на формирование шва. Если используется проволока диаметром 1—2,5 мм, указанные колебания вылета могут ухудшать формирование шва.
Физические свойства покрытия или флюса. При использовании легкого флюса и электрода с легкоплавким покрытием подвижность дуги увеличивается, возрастает ширина шва и сокращается глубина провара. При повышении толщины слоя или тугоплавкости покрытия на конце электрода образуется чехольчик, ограничивающий подвижность дуги, что приводит к уменьшению ширины шва и увеличению глубины провара.
Начальная температура металла в пределах от — 60 до +80° С не влияет на форму шва. Подогрев основного металла до 100—400° С приводит к увеличению ширины шва и глубины провара, причем быстрее растет ширина шва, чем провар. Предварительным подогревом свариваемого металла объясняется увеличение ширины верхних слоев при многослойной сварке и наплавке.
Наклон электрода. Сварку ведут вертикальным электродом, с наклоном углом вперед и углом назад (относительно направления сварки). При сварке углом назад дуга сильнее вытесняет металл из ванны и глубина провара возрастает, а ширина шва уменьшается. При сварке углом вперед давление столба на поверхность металла снижается, что уменьшает глубину провара
и увеличивает ширину шва по сравнению со сваркой вертикальным электродом.
Наклон изделия. При сварке сверху вниз (на спуск) растет толщина слоя жидкого металла под основанием столба дуги и глубина провара от этого уменьшается; увеличивается блуждание дуги и ширина шва возрастает. При сварке снизу вверх (на подъем) толщина слоя жидкого металла под дугой уменьшается, глубина провара возрастает, а ширина шва уменьшается, так как дуга блуждает меньше. Для нормального формирования шва при ручной сварке угол наклона должен быть 8—10°. При большем угле и сварке на спуск происходит подтекание жидкого металла из-под основания дуги, а при сварке на подъем — появляются непровары и подрезы по кромкам шва. Сварка на спуск применяется при выполнении круговых швов (труб, сосудов). Это снижает опасность прожогов, улучшает формирование шва и предупреждает стекание жидкого металла ванны.
Выбор режима сварки. Режим сварки (тип и марку электрода, диаметр его стержня, род, полярность, напряжение, величину тока) выбирают в зависимости от вида, толщины свариваемого металла и конструкции сварного соединения. Определив условия сварки, обеспечивающие получение высококачественного сварного соединения, выбирают диаметр электрода (проволоки) и величину сварочного тока.
Диаметр проволоки электрода выбирается в зависимости от толщины свариваемого металла. Для стыковых швов можно принимать:
При большом диаметре электрода повышается производительность сварки, но возможно проплавление свариваемого металла, затрудняется выполнение швов в вертикальном и потолочном положениях, возможен непровар корня шва. Поэтому первый слой многослойного шва всегда сваривается электродом диаметром 4—5 мм, за исключением швов с U-образной подготовкой, где весь шов можно сваривать электродами одного (максимально допустимого) диаметра.
Вертикальные и потолочные швы свариваются электродами диаметром не более 5 мм; сварщики высокой квалификации могут такие швы сваривать электродами диаметром 6 мм. Прихваточные швы и наплавка валиками небольшого сечения выполняются электродами диаметром не более 5 мм.
Сварочный ток выбирается в зависимости от диаметра электрода и марки электродного покрытия. В табл. 5 были приведены рекомендуемые величины тока для электродов различных марок.
Если ток мал, то в сварочную ванну будет поступать недостаточно тепла и возможно несплавление основного и наплавленного металла (непровар), резко понижающее прочность сварного соединения. При слишком большой величине тока весь электрод, спустя некоторое время после начала сварки, сильно разогревается, его металл начинает быстрее плавиться и стекать в шов. Это создает излишек наплавленного металла в шве и также связано с опасностью образования непровара в случае попадания жидкого электродного металла на нерасплавленный основной металл.
При выборе величины тока для сварки встык низкоуглеродистой стали в нижнем положении можно пользоваться формулой акад. К. К. Хренова
где Iсв — сварочный ток, а;
d — диаметр металлического стержня электрода, мм.
При толщине металла менее 1,5 d ток уменьшают на 10—15%, а при толщине более 3 d — увеличивают на 10—15% по сравнению с полученным по формуле. При сварке на вертикальной плоскости ток уменьшают на 10—15%, а при сварке потолочных швов — уменьшают на 15—20% по сравнению с током, выбранным для сварки в нижнем положении металла той же толщины.
Для сварки соединений внахлестку и тавровых можно применять больший ток, гак как в этом случае опасность сквозного проплавления меньше.
Автор: Администрация Общая оценка статьи: Опубликовано: 2011.06.01 Обновлено: 2020.03.04
Режимы сварки
Когда разговор заходит о таком понятии, как режимы сварки, необходимо осознавать, что это достаточно большая совокупность различных параметров, которые в свою очередь и определяют условия сварочного процесса. И чтобы качество конечного результата было только положительным, нужно правильно подобрать эти самые параметры. И хотя специалисты условно делят их на основные и второстепенные, все они без исключения влияют на качество сварного шва.
К основным параметрам режима сварки можно отнести:
- Величину установленного на сварочном аппарате тока.
- Его род (постоянный или переменный) и полярность (прямая или обратная).
- Напряжение сварочной дуги.
- Диаметр используемого электрода.
- Скорость сварочного процесса.
- Число проходов для заполнения сварного шва.
К второстепенным можно отнести:
- Качество зачистки свариваемых заготовок.
- Форма соединяемых кромок.
- Вид электрода: его марка, тип покрытия, толщина обмазки.
- Угол наклона электрода относительно сварочной поверхности.
- Его положение (верхнее, нижнее или боковое).
- Как расположен стык (горизонтально, вертикально, под углом).
Параметры режима сварки
Необходимо отметить, что чаще всего сварщики обращают внимание на основные параметры и на их взаимную связь, но при этом не упускают из виду и второстепенные. К примеру, диаметр электродов подбирается в зависимости от толщины свариваемых металлических деталей, от положения стыка, а также от формы подготовленных кромок. И хотя существуют таблицы, в которых определяется диаметр расходника относительно толщины заготовок, очень важно учитывать и положение самого электрода в процессе сварки.
Нельзя использовать для потолочного сваривания электроды диаметром больше 4 мм. То же самое касается и многопроходного процесса, потому что именно в этом случае может получиться непровар корневого шва.
Ток при сварке
Что касается силы тока, то и здесь есть несколько положений относительно выбора параметров сварки. Все дело в том, что чем интенсивнее ток, тем выше температура внутри сварочной ванны. А это влияет на скорость расплавления металла и на производительность самого сварочного процесса. И это правильно, но с некоторыми оговорками.
- При повышенном токе и небольшом диаметре электрода происходит перегрев в зоне сваривания заготовок. Это уже снижение качества шва. Плюс интенсивное разбрызгивание металла внутри ванны. Нередко такой режим приводит к прожогу.
- Если силу тока понизить, то это гарантия непроваров, потому что при низком токе дуга становится нестабильной. А при такой дуге процесс сваривания часто обрывается. Вот и снижение качества соединения.
- Если выбирается электрод с большим диаметром, не учитывая толщины заготовок, то ухудшается плотность тока. Причина – низкое охлаждение металла в зоне сварки.
Не последнее слово в таком понятии, как выбор режима сварки, имеет и полярность постоянного тока. При обратной полярности тока глубина провара на 40% больше, чем при прямой. Используя для сварки переменный ток, необходимо учитывать, что глубина провара при его использовании на 15% меньше, чем при постоянном. И это при одной и той же величине тока.
Сами же сварщики с большим опытом сварочный ток устанавливают опытным путем. Они просто обращают внимание на стабильное состояние дуги, на ее устойчивое горение. Новички могут использовать различные таблицы или формулы. К примеру, одна из формул, которая определяет силу тока в зависимости от диаметра расходника. Ее можно использовать, если при сварке применяется электрод диаметром меньше 3 мм.
I =30 d
Скорость сварочного процесса
Выбор режима дуговой сварки зависит и от скорости перемещения электрода. Данный параметр напрямую связан с толщиною деталей и толщиною шва. Ее идеальное значение может считаться только тогда, когда участок соединения расплавленного металла с кромками деталей будет без подрезов, прожогов и непроваров. Сам шов – это переход равномерной формы без наплывов и подрезов.
Выше скорость, меньше металла попадет в ванну, кромки не нагреются до необходимой температуры, отсюда и непровар шва, который быстро растрескается. Меньше скорость, образуются наплывы, которые мешают провару. Оптимальный режим – это когда ширина шва больше диаметра расходника в два раза.
Длина дуги
Еще один параметр, который влияет на режимы дуговой сварки. Длина дуги – это расстояние от конца электрода до верхней поверхности свариваемой кромки. Идеальный вариант, если это расстояние на всей длине сварочного шва будет одинаковым. Но и это еще не все. Важно правильно подобрать это расстояние.
Специалисты считают, что длина дуги должна равняться диаметру используемого расходника. К сожалению, такое расстояние могут выдержать только опытные сварщики. Поэтому существуют определенные отклонения. К примеру, для электрода диаметром 3 мм лучше держать расстояние до кромки в пределах 3,5 мм.
Угол наклона электрода
Положение электрода относительно плоскости сварки влияет на ширину сварочного шва и на его глубину проваривания. Оптимально считается, если стержень должен быть расположен к соединению заготовок перпендикулярно. Но это практически невозможно, потому что сварной инструмент сварочного аппарата перемещается вдоль стыка. Поэтому электрод располагается или с наклоном вперед, или с наклоном назад.
В первом случае шов получается широким, а глубина проплавления уменьшается. Так получается потому, что происходит вытеснение расплавленного металла в переднюю часть сварочной ванны. Во втором случае, наоборот, расплавленный металл выталкивается в заднюю часть ванны. Поэтому хорошо таким способом проваривается глубина стыка, а вот ширина шва заметно уменьшается.
Кстати, точно такое же влияние на качество шва оказывает и угол наклона свариваемых заготовок. Если сварка производится на деталях, которые расположены под определенным углом, а сам электрод движется сверху вниз, то под расходником образуется утолщенный слой расплавленного металла. А это увеличение ширины шва и уменьшение глубины провара. Если движение производится снизу вверх, то под дугой расплавленного металла намного меньше, что позволяет углубить сварку, но при этом получить незначительную ширину шва.
Специалисты рекомендуют устанавливать заготовки под небольшим углом, не больше 10°. Таким способом можно избежать растекания металла вдоль шва, что обеспечит качество сварки. Таким образом, можно избежать непроваров и подрезов.
Как видите, режимы ручной дуговой сварки – это комплекс мероприятий, основанных на правильном подборе некоторых параметров. Даже самое незначительное отклонение может привести к снижению качества соединения двух металлических заготовок.
Технология ручной дуговой сварки Ч.2 Выбор режима ручной дуговой сварки
Статья «Выбор режима ручной дуговой сварки» является продолжением статьи «Технология ручной дуговой сварки Ч.1 Подготовка металла под сварку». Режимами сварки называют совокупность показателей, влияющих на процесс и условия сварки. Правильно подобранные режимы улучшают качество сварного соединения и позволяют свести к минимуму затраты на материалы, энергию и снизить трудоёмкость.
Основные и дополнительные параметры режима сварки
Основными параметрами режима ручной дуговой сварки являются диаметр электрода, сила сварочного тока, а также его род и полярность, напряжение электрической дуги и скорость сварки.
К дополнительным параметрам относят такие показатели, как величина вылета электрода, состав и толщина защитного покрытия на нём, положение электрода и пространственное расположение сварного соединения (т.е. как выполняется сварка: сварка вертикальных швов, сварка горизонтальных швов, сварка потолочного шва и т.д.).
Выбор диаметра электрода при ручной дуговой сварке
Главным критерием при выборе диаметра электрода является толщина свариваемых кромок. Также при выборе диаметра учитывают вид сварного соединения и форму свариваемых кромок. Диаметры электрода, в зависимости от толщины свариваемых деталей, представлены в таблице:
В случае выполнения угловых и тавровых швов, диаметр электродов выбирают, исходя из размеров катета сварного шва. При выполнении швов катетом 3-5мм, выбирают электроды диаметром 3-4мм. Если катет шва находится в пределах 6-8мм, диаметр электрода составляет 4-5мм.
При этом, необходимо иметь ввиду, что применение электродов с диаметром свыше 6мм ограничено из-за их большой массы. Кроме того, при их применении сложно проварить корень шва.
При выполнении многослойных швов, лучшим вариантом будет выполнить первый слой электродом малого диаметра (не более 4мм), для хорошего провара корня шва в глубине разделки. Это, в равной степени, относится как к сварке стыковых швов, так и к сварке угловых швов.
Выбор сварочного тока при ручной дуговой сварке
Род и полярность сварочного тока
Увеличение силы сварочного тока способствует росту глубины проплавления (провару). Род сварочного тока и его полярность также влияют на форму и размеры сварного шва. Если сварка металла производится постоянным током обратной полярности, то глубина проплавления получается на 40-50% больше, чем при сварке постоянным током прямой полярности из-за того, что на катоде и аноде происходит выделение разного количества теплоты. Сварка переменным током уменьшает проплавление металла на 15-20%, по сравнению со сваркой постоянным током обратной полярности.
Сила сварочного тока
Сила сварочного тока определяется, главным образом, исходя из диаметра электрода. Но на её значение, также, может влиять вылет электрода, состав покрытия и пространственное положение сварного соединения. Увеличение силы сварочного тока способствует увеличению производительности сварочных работ, т.е. количество наплавляемого металла выше.
Но, при излишне большой силе тока для данного диаметра электрода, он перегревается, и это приводит к снижению качества сварки и разбрызгиванию металла. Если сила тока недостаточна для электрода, то электрическая дуга получается неустойчивая, часто обрывается, что приводит к таким дефектам сварного шва, как непровары.
Значение силы тока при сварке конструкционных сталей, вычисляют по следующим формулам:
для электродов диаметром менее 3мм: I=30d;
для электродов диаметром 4-6мм: I=(20+6d);
для электродов диаметром более 6мм: I=(40…50)d;
Где I — сила сварочного тока, А; d — диаметр электрода, мм.
Сила тока при ручной дуговой сварке может очень сильно изменяться: от 50 до 350А. При её расчёте в формулы вносят поправки, в зависимости от свариваемой толщины и пространственного положения сварного соединения.
При толщине свариваемых деталей от 1,3d до 1,6d, силу сварочного тока, найдённую по формулам, снижают на 10-15%. Если толщина свариваемого металла составляет более 3d, то силу тока увеличивают на 10-15%. Для сварки вертикальных швов, а также для сварки потолочных швов, расчётную силу тока снижают на 10-15%.
Напряжение и скорость при ручной дуговой сварке
Напряжение при сварке не сильно влияет на величину провара, но от того, какое выбрано напряжение, зависит ширина сварного шва. При увеличении напряжения, происходит увеличение ширины сварного шва. При этом увеличение происходит независимо от полярности тока. Напряжение при ручной дуговой сварке, в отличие от силы тока, изменяется в узких пределах: от 16 до 30В.
Скорость сварки, в отличии от напряжения, оказывает сильное влияние как на глубину провара, так и на ширину сварного шва. При увеличении скорости сварки, и глубина провара, и ширина шва уменьшаются.
Смотрите также следующую статью из цикла «Технология ручной дуговой сварки», под названием «Технология ручной дуговой сварки Ч.3 Техника ручной дуговой сварки». В ней мы поговорим о правильном выполнении сварных швов.
Технология ручной дуговой сварки
Ручную дуговую сварку выполняют сварочными электродами, которые вручную подают в дугу и перемещают вдоль заготовки. В процессе сварки металлическим покрытым электродом — дуга горит между стержнем электрода и основным металлом. Стержень электрода плавится, и расплавленный металл каплями стекает в металлическую ванну. Вместе со стержнем плавится покрытие электрода, образуя газовую защитную атмосферу вокруг дуги и жидкую шлаковую ванну на поверхности расплавленного металла. Металлическая и шлаковые ванны вместе образуют сварочную ванну. По мере движения дуги сварочная ванна затвердевает и образуется сварочный шов. Жидкий шлак после остывания образует твердую шлаковую корку.
Электроды для ручной сварки представляют собой стержни с нанесенными на них покрытиями. Стержень изготовляют из сварочной проволоки повышенного качества. Сварочную проволоку всех марок в зависимости от состава разделяют на три группы: низкоуглеродистая, легированная и высоколегированная.
Ручная сварка удобна при выполнении коротких и криволинейных швов в любых пространственных положениях (рис. 1) — нижнем, вертикальном, горизонтальным, потолочном, при наложении швов в труднодоступных местах, а также при монтажных работах и сборке конструкций сложной формы. Ручная сварка обеспечивает хорошее качество сварных швов, но обладает более низкой производительностью, например, по сравнению с автоматической дуговой сваркой под флюсом.
Рис. 1. Виды сварных швов
Производительность процесса в основном определяется сварочным током. Однако ток при ручной сварке покрытыми электродами ограничен, так как повышение тока сверх рекомендованного значения приводит к разогреву стержня электрода, отслаиванию покрытия, сильному разбрызгиванию и угару расплавленного металла.
Выбор режима. Под режимом сварки понимают совокупность контролируемых параметров, определяющих условия сварки.
Диаметр электрода выбирают в зависимости от толщины металла, катета шва, положения шва в пространстве.
Примерное соотношение между толщиной металла S и диаметром электрода dэ при сварке в нижнем положении шва составляет:
Сила тока в основном зависит от диаметра электрода, но также зависит и от длины его рабочей части, состава покрытия, положения в пространстве сварки.
Чем больше ток, тем больше производительность, т. е. большее количество наплавленного металла:
где Q — количество наплавленного металла; αн — коэффициент наплавки, г/(А·ч);
Однако при чрезмерном токе для данного диаметра электрода, электрод быстро перегревается выше допустимого предела. Это приводит к снижению качества шва и повышенному разбрызгиванию. При недостаточном токе дуга неустойчива, часто обрывается, в шве могут быть непровары. Величину тока приблизительно можно определить по следующим формулам:
при сварке конструкционных сталей для электродов диаметром 3—6 мм:
где dэ — диаметр электрода, мм.
Сварку швов в вертикальном и потолочном положениях выполняют, как правило, электродами диаметром не более 4 мм. При этом сила тока должна быть на 10—20% ниже, чем для сварки в нижнем положении. Напряжение дуги изменяется в сравнительно узком интервале 16—30 В.
Техника сварки. Дуга — мощный стабильный разряд электричества в ионизированной атмосфере газов и паров металла. Ионизация дугового промежутка возникает во время зажигания дуги и непрерывно поддерживается в процессе ее горения. Процесс зажигания дуги в большинстве случаев включает в себя три этапа: короткое замыкание электрода на заготовку, отвод электрода и возникновение устойчивого дугового разряда.
Дуга может возбуждаться двумя приемами: касанием конца электрода к свариваемому изделию и отводом от изделия перпендикулярно вверх на расстояние 3—4 мм (рис. 2), или быстрым боковым движением электрода к свариваемому изделию и отводе электрода от изделия («чирканьем» электродом по изделию, подобно зажиганию спички). Прикосновение электрода к изделию должно быть кратковременным, иначе он приваривается к изделию. Второй способ удобнее, но неприемлем в узких и неудобных местах.
Рис. 2. Методы зажигания дуги: а — боковым движением; б — касанием электрода
В процессе сварки необходимо поддерживать определенную длину дуги, которая зависит от марки и диаметра электрода. Ориентировочно нормальная длина дуги должна быть в пределах
где Lд — длина дуги, мм; dэ — диаметр электрода, мм.
Длина дуги значительно влияет на качество сварки. Короткая дуга горит устойчиво и обеспечивает получение высококачественного сварного шва, так как расплавленный металл быстро проходит дуговой промежуток и меньше подвергается окислению и азотированию. Кроме этого, сварка на длинной дуге электродами с покрытием основного типа, приводит к пористости металла шва. Для правильного формирования шва при сварке плавящимся электродом необходимо электрод по отношению к поверхности свариваемого металла держать наклонно, под углом 15—20° от вертикальной линии. Изменяя угол наклона электрода, можно регулировать глубину расплавления основного металла и влиять на скорость охлаждения сварочной ванны. На рис. 3 показано влияние наклона электрода и наклона свариваемого изделия на глубину проплавления основного металла.
Рис. 3. Влияние наклона электрода и наклона свариваемого изделия на глубину проплавления основного металла: а — сварка углом вперед; б — сварка углом назад; в — сварка вертикальным электродом под уклон; г — сварка вертикальным электродом на подъем; д — сварка вертикальным электродом горизонтальной поверхности
Кроме длины дуги на качество сварного шва также влияет величина сварочного тока, напряжение и темп сварки. Внешний вид получаемого сварного шва при отклонении от нормальных режимов показан на рис. 4.
Рис. 4. Зависимость сварного шва от напряжения, тока и темпа сварки
В процессе сварки электроду сообщается движение в трех направлениях.
- Первое движение— поступательное, по направлению оси электрода. Этим движением поддерживается постоянная (в известных пределах) длина дуги в зависимости от скорости плавления электрода.
- Второе движение — перемещение электрода вдоль оси образования валика шва. Скорость этого движения устанавливается в зависимости от тока, диаметра электрода, скорости его плавления, вида шва и других факторов. При отсутствии поперечных движений электрода получается так называемый ниточный валик, на 2—3 мм шире диаметра электрода, или узкий шов шириной е = 1,5dэ.
- Третье движение— перемещение электрода поперек шва для получения шва шире, чем ниточный валик, так называемого уширенного валика.
Поперечные колебательные движения конца электрода определяются формой разделки, размерами и положением шва, свойствами свариваемого материала, навыком сварщика. Широкие швы (e = (1,5 – 5)dэ) получают с помощью поперечных колебаний, изображенных на рис. 5. На примере этих основных колебательных движений в табл. 1 приведены движения электрода при различных видах сварки.
Рис. 5. Схема движения конца электрода при ручной электродуговой сварке
При сварке тонких листов накладывают узкий валик (шириной 0,8—1,5 диаметра электрода) без поперечных колебаний. В других случаях (при сварке толстых листов) применяют уширенные валики. Колебательные движения улучшают прогрев кромок шва, замедляют остывание ванны наплавленного металла, обеспечивают получение однородного шва и устраняют непровар его корня.
Таблица 1. Примеры движения электрода при различных видах сварки
Как новичку выбрать силу сварочного тока. Простая инструкция.
И так, кто тут задался вопросом как выбрать сварочный ток? Это не важно, начинающий вы сварщик или уже бывалый. Мы готовы подсказать каждому. Для всех одна инструкция.
Показано как выбрать сварочный ток
Для начала нужно понять, что выбор силы сварочного тока — важный этап сварочных работ. И пренебрегать этим этапом нельзя ни новичку ни опытному. От данного выбора на пряму зависит качество будущих сварных соединений.
В нашем, теоретическом материале мы научимся самостоятельно определять необходимую величину сварочного тока. После прочтения даже новички с легкостью сделают правильный выбор.
Обратите внимание! В статье рассматриваются сварочные инверторы. Так как данное оборудование самое распространенное. Новички и профессионалы постоянно используют их.
Как выбрать сварочный ток. Общая информация.
Возможно не все понимают, что до начала работы следует обратить внимание на несколько параметров.
Выбрать сварочный ток совершенно не сложно. Существуют основные факторы:
-
Толщина свариваемых деталей
Да, этот пункт мы ставим на первое место, так как для новичков он должен быть основным. В соответствии с толщиной металла в первую очередь мы определяемся с диаметром электрода и только потом с силой тока.
Диаметр электрода
Ну вот и самый ожидаемый пункт. Все верно! От диаметра электрода зависит наш выбор в плане силы тока.
Пространственное положение сварки
Все понимают, что выполнять сварочные работы невозможно только в нижнем положении. Существуют так же потолочные, вертикальные, горизонтальные. Если например, для нижнего положения все стандартно. То для потолочного и вертикального придется поработать с процентами. Вот например: если в нижнем положении, мы решили выставить 90 ампер, то для сварки того же металла, тем же электродом в вертикальном положении придется отнять около 15%, а для потолочного все 25%.
Необходимость многослойной сварки.
Новички, нет здесь не какой ошибки. Бывает такое, когда толстый металл необходимо проваривать в несколько проходов, это нормально. Вот именно по этому, к каждому слою могут предъявляться разные требования. Из этого следует различия в силе сварочного тока.
Марка электрода
Этот пункт для более опытных сварщиков. Которые готовы работать с ответственными конструкциями. В этом случае могут использоваться разные электроды. А разные электроды, значит разный их состав и свойства, соответственно разная сила тока.
Род тока
Какой род тока существует? Еще со школы известно — переменный и постоянный. Это две большие разницы, тем более в отношении сварочных работ. И этот пункт берется в учет при выборе режима.
Полярность
Существует, ну на сколько мне известно=), два вида полярности — прямая и обратная. Дело в том, что электрическая дуга может возбуждаться от электрода к основному металлу или наоборот. Так что, седьмой пункт так же играет ключевую роль.
Вид сварочного соединения
Таких видов существует несколько. Вот основные из них: Тавровое, нахлесточное, стыковое. Даже это учитывается при выборе силы тока для сварки.
В двух словах о выборе тока для сварки
Ну что новички, по немногу вникаем в суть дела?*- ) Отлично! Но думаю стоит немного закрепить пройденное. Первым делом запомните, сила тока в сварке играет ключевую роль. А выбирается она в зависимости от некоторых условий. Основное условие — толщина металла, далее следует диаметр электрода, затем выбор сварочного тока(для новичков этого достаточно).
Как выбрать сварочный ток в зависимости от диаметра электрода
Как вы уже поняли, сварочный ток можно выбрать в зависимости от диаметра электрода. А в соответствии с чем мы выберем диаметр электрода? Правильно, в соответствии с толщиной свариваемых металлов. То есть, если толщина выбранного металла равна 1-2мм, то диаметр электрода 2 мм, а сила сварочного тока от 25- 60амп. Толщина металла 2-3.5мм, электрод 3мм, ток 45-120амп. Металл 4-15мм, электрод 4 мм, ток — 120 — 250 амп. Толщина металла 15-20 мм, электрод 5 мм, ток — 160-340.
Во внимание взяты самые распространенные диаметры используемых электродов. Существуют конечно и 8мм и тд, но это редкость.
Если не согласен, пиши в комментариях свою версию!
Сила сварочного тока на инверторах
В то время как профессиональные сварщики пользуются серьезным оборудованием, мы поговорим о сварочных бытовых инверторах. Многие видели, слышали, у кого то есть такой «малыш«. Бесспорно, инвертор отличный выбор для решения бытовых задач. Подварить крыльцо на даче, изготовить многие бытовые конструкции, возможно даже «калымить» в свободное время — отличное применение для этого «малыша«. Но не стоит забывать, что его мощностные способности серьезно ограничены. Даже если на его циферблате имеется значение в 160 ампер, это не говорит о том, что он столько готов выдать своему обладателю. Почему так? Все просто, удлинитель, сечение провода «держака» и прочее попросту своруют некоторую часть мощности. В связи с этим, просьба учитывать возможности вашего оборудования при выполнение сварочных работ, дабы не натворить «делов» =).
Ко всему прочему, очень прошу не слушайте всех подряд. Не обращайте существенного внимание советам диванных критиков. Опирайтесь только на проверенные источники. Определитесь, кому вы готовы доверять. И совершенно не важно, делаете для себя или на заказ. Качество всегда должно быть на высоте, а безопасность на шаг впереди!
Заключение
Наконец-то, все запомнили, что выбор силы сварочного тока является основным этапом перед началом сварочных работ. Более того, есть несколько зависимых фактора. Каждый из которых зависит друг от друга(как и все, во всем мире). Следуйте нашей простой инструкции и выбор сварочного тока окажется гораздо проще чем могло показаться. Сохраните наши таблички и иногда посматривайте в них. Самое главное, в любой работе, качество. Не забывайте об этом и мир станет лучше! Всего доброго уважаемые коллеги, пусть работы всегда будет хватать всем! Удачи!
Не забывайте оставлять свое мнение в комментариях. Мы всегда рады вашим словам, мнениям и взглядам!
