Для чего в сталь вводятся легирующие элементы

Влияние основных легирующих элементов на свойства стали.

Влияние отдельных компонентов на свойства стали

Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, А1, В, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15. 20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых сталей.

Влияние примесей

Постоянные (технологические) примеси являются обязательными компонентами сталей и сплавов, что объясняется трудностью их удаления как при выплавке (Р,S). Так и в процессе раскисления (Si, Mn) или из шихты — легированного металлического лома (Ni, Cr и др.).

К постоянным примесям относят углерод, марганец, кремний, серу, фосфор, а также кислород, водород и азот.

Углерод

При увеличении содержания углерода до 1,2% возрастают прочность, твердость, порог хладноломкости (0,1%С повышает температуру порога хладноломкости на 20С), предел текучести, величина электрического сопротивления и коэрцитивная сила. При этом снижаются плотность, теплопроводность, вязкость, пластичность, величины относительных удлинения и сужения, а также величина остаточной индукции.

Существенную роль играет то, что изменение физических свойств приводит к ухудшению целого ряда технологических характеристик — таких, как деформируемость при штамповке, свариваемость и др. Так, хорошей свариваемостью отличаются низкоуглеродистые стали. Сварка средне и особенно высокоуглеродистых сталей требует применения подогрева, замедляющего охлаждение, и других технологических операций, предупреждающих образование трещин.

Марганец

Марганец вводят в стали как технологическую добавку для повышения степени их раскисления и устранения вредного влияния серы. Марганец считается технологической примесью, если его содержание, не превышает 0,8%. Марганец как технологическая примесь существенного влияния на свойства стали не оказывает.

Кремний

Кремний также вводят в сталь для раскисления. Содержание кремния как технологической примеси обычно не превышает 0,37%. Кремний как технологическая примесь влияния на свойства стали не оказывает. В сталях, предназначенных для сварных конструкций, содержание кремния не должно превышать 0,12-0,25%.

Сера

Пределы содержания серы как технологической примеси составляют 0,035-0,06%. Повышение содержания серы существенно снижает механические и физико-химические свойства сталей, в частности, пластичность, ударную вязкость, сопротивление истиранию и коррозионную стойкость. При горячем деформировании сталей и сплавов большое содержание серы ведет к красноломкости. Кроме того, повышенное содержание серы снижает свариваемость готовых изделий.

Фосфор

Пределы содержания фосфора как технологической примеси составляют 0,025-0,045%. Фосфор, как и сера, относится наиболее вредным примесям в сталях и сплавах. Увеличение его содержания, даже на доли процента, повышая прочность, одновременно повышает текучесть, хрупкость и порог хладноломкости и снижает пластичность и вязкость. Вредное влияние фосфора особенно сильно сказывается при повышенном содержании углерода.

Кислород и азот

Кислород и азот растворяются в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (оксидами, нитридами, газовой фазой). Они оказывают отрицательное воздействие на свойства, вызывая повышение хрупкости и порога хладноломкости, а также снижают вязкость и выносливость. При содержании кислорода более 0,03% происходит старение стали, а более 0,1% — красноломкости. Азот увеличивает прочность и твердость стали, но снижает пластичность. Повышенное количество азота вызывает деформационное старение. Старение медленно развивается при комнатной температуре и ускоряется при нагреве до 250oС.

Водород

Увеличение его содержания в сталях и сплавах приводит к увеличению хрупкости. Кроме того, в изделиях проката могут возникнуть флокены, которые развивает водород, выделяющийся в поры. Флокены инициируют процесс разрушения. Металл, имеющий флокены, нельзя использовать в промышленности.

Влияние легирующих элементов

Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15-20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых.

Все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости.

Классификация

По применимости для легирования можно выделить три группы элементов. Применимость для легирования различных элементов определяется не столько физическими, сколько, в основном, экономическими соображениями.

Легирующие элементы по механизму их воздействия на свойства сталей и сплавов можно разделить на три группы:

  • влияние на полиморфные (альфа-Fe -> гамма-Fe) превращения;
  • образование с углеродом карбидов (Сг,Fе)7С3; (Сг,Ре)23С6; Мо2С и др.;
  • образование интерметаллидов (интерметаллических соединений) с железом — 7Мо6; Fe3Nb и др.

По характеру влияния на полиморфные превращения легирующие элементы можно разделить на две группы:

  • элементы (Cr, W, Mo, V, Si, Al и др.), достаточное содержание которых обеспечивает существование в сталях при всех температурах легированного феррита (ферритные ставы);
  • элементы (Ni, Mn и др.), стабилизирующие при достаточной концентрации легированный аустенит при всех температурах (аустенитные сплавы). Сплавы, только частично претерпевающие превращение гамма->альфа, называются, соответственно, полуаустенитными или полуферритными.

Легирование феррита сопровождается его упрочнением. Наиболее значительно влияют на его прочность марганец и хром. Причем чем мельче зерно феррита, тем выше его прочность.
Многие легирующие элементы способствуют измельчению зерен феррита и перлита в стали, что значительно увеличивает вязкость стали. Однако все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости. Никель понижает порог хладноломкости.
Легированный аустенит парамагнитен, обладает большим коэффициентом теплового расширения. Легирующие элементы, в том числе азот и углерод, растворимость которого в аустените при нормальной температуре достигает 1%, повышают его прочность при нормальной и высокой температурах, уменьшают предел текучести.
Легированный аустенит является основной составляющей многих коррозионностойких, жаропрочных и немагнитных сплавов. Он легко наклепывается, то есть быстро и сильно упрочняется под действием холодной деформации.
Легирующие элементы (исключение кобальт), повышая устойчивость аустенита, снижают критическую скорость закалки и увеличивают прокаливаемость. Для многих аустенитных сплавов критическая скорость закалки снижается до 20°С/с и ниже, что имеет большое практическое значение.
Карбидообразующие элементы: Fe — Mn — Cr — Mo — W — Nb — V — Zr — Ti (за исключением марганца) препятствуют росту зерна аустенита при нагреве. Сталь, легированная этими элементами, при одинаковой температуре сохраняет более высокую дисперсность карбидных частиц, и соответственно большую прочность.
Интерметаллиды образуются при высоком содержании легирующих элементов между этими элементами или с железом. Примером таких соединений могут служить Fe7Mo6, Fe3Nb2 и др. Интерметаллиды, как правило, отличают повышенные твердость и хрупкость.

В следующей таблице показано влияние наиболее применяемых легирующих элементов на свойства стали.

Основные легирующие элементы и их влияние на свойства сталей

Окончание таблицы 5.1

Введение легирующих элементов значительно усложняет взаимодействие компонентов в стали между собой, приводит к образованию новых фаз и структурных составляющих, изменяет кинетику превращений и технологию термической обработки. Причем распределение легирующих элементов в сталях весьма разнообразно – они могут находиться в сталях:

· в свободном состоянии (медь, свинец, серебро);

· в виде интерметаллидных соединений (металла с металлом) с железом или между собой;

· в виде оксидов, сульфидов и других неметаллических соединений (алюминий, титан и ванадий, являясь раскислителями, образуют оксиды Αl2О3, TiO2, V2O5);

· в карбидной фазе – в виде твердого раствора в цементите или в виде самостоятельных соединений с углеродом – специальных карбидов;

· в растворенном виде в железе.

Взаимодействие легирующих элементов с углеродом.

Углерод, взаимодействуя с железом, формирует в сталях внутреннее строение и механические свойства. Введение легирующих элементов нарушает это взаимодействие. По характеру взаимодействия с углеродом легирующие элементы подразделяются на некарбидообразующие и карбидообразующие.

К некарбидообразующим элементам относятся никель, кремний, кобальт, алюминий, медь. Они растворяются во всех кристаллических состояниях железа и изменяют его свойства. Карбидообразующими элементами являются хром, марганец, молибден, вольфрам, ванадий, титан, ниобий, цирконий. Они могут растворяться в железе или образовывать карбиды (Mn3C, Cr23C6, Cr7C6, Fe3Mo3C, Fe3W3C и др.), сравнительно легко растворяющиеся в аустените при нагреве, и карбиды (MoC, W2C, WC, VC, TiC и др.), практически не растворяющиеся в аустените при нагреве.

Кроме того, все карбидообразующие элементы могут растворяться в цементите, образуя легированный цементит. Все карбиды и легированный цементит обладают более высокой температурой распада и твердостью и в дисперсном виде значительно упрочняют сталь.

Влияние легирующих элементов на полиморфные модификации железа.

Полиморфные состояния железа при образовании твердых растворов введением легирующих элементов смещаются по температуре. Все легирующие элементы по влиянию на полиморфные состояния железа можно разделить на две группы:

· расширяющие область Feγ (или легированного аустенита);

К первой группе относятся никель, марганец, кобальт, медь. Точка А3 железа с увеличением содержания этих элементов снижается, расширяя область существования Feγ на диаграмме «Железо – легирующий элемент». Такое состояние сплава может существовать от температуры плавления до весьма низких отрицательных температур. Такие стали называются аустенитными. Примером может служить износостойкая сталь 110Г13Л, содержащая 13 % марганца.

Ко второй группе относятся кремний, хром, вольфрам, молибден, алюминий, ванадий, титан. Точка А3 железа с увеличением содержания этих элементов повышается, расширяя область Feα и сужая область Feγ. Область Feα легированного феррита также может существовать от температуры плавления до весьма низких отрицательных температур. Такие стали называются ферритными. Примером может служить жаростойкая сталь Х25.

Свойства феррита существенно изменяются при введении легирующих элементов. Причиной изменения свойств является размерное несоответствие атомов легирующих элементов и железа, приводящее к искажению кристаллической решетки железа, возникновению внутренних напряжений и торможению движения дислокаций. Прочность и твердость феррита возрастает, а ударная вязкость снижается. Исключением являются хром (до 3 %) и никель, с введением которых ударная вязкость возрастает.

Кроме того, добавки никеля до 6 % снижают температурный порог хладноломкости железа до –200 °С. Поэтому детали механизмов и машин, работающих при низких температурах, изготавливаются из сталей с добавками никеля. Остальные элементы существенно повышают температурный порог хладноломкости, что ухудшает надежность работы деталей при низких температурах из-за увеличения вероятности их разрушения.

Влияние легирующих элементов на равновесную структуру железоуглеродистых сплавов.

Важнейшими точками диаграммы «Fe – Fe3C», позволяющими классифицировать железоуглеродистые стали, являются точки S и E. Большинство легирующих элементов сдвигают эти точки в сторону меньшего содержания углерода, что означает смещение границ для сталей и чугунов. Например, при введении 5 % хрома доэвтектоидные стали содержат до 0,6 % углерода, эвтектоидные – 0,6 %, заэвтектоидные – от 0,6 до 1,5 %. Свыше 1,5 % углерода – в структуре стали появляется ледебурит, поэтому такие стали названы ледебуритными. Эти стали, обладая высокой износостойкостью, используются для изготовления холодных штампов. Аналогичные закономерности наблюдаются у сталей с добавками вольфрама и молибдена, которые используются для изготовления быстрорежущего инструмента.

Кроме того, в легированных сталях совместное влияние углерода и легирующих элементов на точки А1, А3, Аm весьма сложное, поэтому температура этих точек для каждой стали определяется экспериментально. Знание этих точек необходимо для назначения режимов термической обработки, например, для сравнения (из марочника сталей):

– сталь 45Х имеет АС1 = 735 °С, а АС3 = 770 °С;

– сталь 45ХН имеет АС1 = 750 °С, а АС3 = 790 °С;

– сталь 45ХН2МФА имеет АС1 = 735 °С, а АС3 = 825 °С.

Читать еще:  Обслуживание перфоратора своими руками

Влияние легирующего элемента на изотермический распад аустенита, а также на его распад при непрерывном охлаждении.

Это выражается в увеличении устойчивости переохлажденного аустенита. С-образные области (диффузионные и частично диффузионные превращения) на изотермических и термокинетических диаграммах сдвигаются вправо по оси времени (увеличивается устойчивость переохлажденного аустенита), что обусловлено меньшей диффузионной подвижностью атомов легирующих элементов (кроме кобальта) по сравнению с атомами углерода (рис. 5.1). Причем при введении некарбидообразующих элементов (никель, марганец, кремний) форма С-образной области остается такой же, как и для углеродистой стали. Введение же карбидообразующих элементов (хром, вольфрам, молибден) изменяет вид
С-образной области: выделяются области диффузионного и частично диффузионного превращений и между этими областями аустенит может иметь аномально высокую устойчивость.

В целом увеличение устойчивости переохлажденного аустенита повышает прокаливаемость легированных сталей. Введение отдельных элементов, например бора 0,001–0,005 %, может увеличить прокаливаемость в десятки раз.

Рис. 5.1. Диаграммы изотермического распада аустенита:
а – углеродистая (1, область Ап →Ф + Ц) и легированная некарбидообразующими
элементами (2, область Ап →Ф + К) стали; б – углеродистая (1) и легированная

карбидообразующими элементами (2, область Ап →Ф + К) стали

При закалке (нагрев, выдержка, охлаждение со скоростью V > VКР) углеродистых сталей из переохлажденного аустенита образуется мартенсит. Влияние легирующих элементов на рост зерна аустенита при нагреве зависит от их способности образовывать карбиды при взаимодействии с углеродом. Элементы, не образующие карбиды (никель, кобальт, кремний, медь), практически не препятствуют росту зерна аустенита, а элементы, образующие карбиды (хром, вольфрам, молибден, ванадий, титан), препятствуют росту зерна аустенита. Сохранение мелкозернистого состояния аустенита до температур 930–950 ºС обусловлено высокой теплостойкостью карбидов, являющихся барьерами для перемещения границ зерна аустенита. Мелкоигольчатый мартенсит, полученный из мелкозернистого аустенита, обеспечивает стали повышенную вязкость.

Влияние легирующих элементов на мартенситное превращение сталей.

При введении легирующих добавок температурный интервал мартенситного превращения изменяется, что отражается на количестве остаточного аустенита в закаленной стали (рис. 5.2). Как видно из рисунка, алюминий и кобальт повышают мартенситную точку и снижают количество остаточного аустенита, но большинство легирующих элементов (марганец, молибден, хром) снижают мартенситную точку и увеличивают количество остаточного аустенита, что ухудшает качество стали после закалки. Для устранения остаточного аустенита такие стали после закалки обрабатываются холодом.

Рис. 5.2. Влияние легирующих элементов на температуру мартенситного
превращения (а) и количество остаточного аустенита (б) в стали с 1,0 % углерода

Более того, влияние легирующих элементов на поведение сталей может быть настолько значительным, что точка МН смещается ниже комнатной температуры. В этом случае мартенситное превращение отсутствует и охлаждением фиксируется аустенитное состояние, например, при введении 5 % марганца.

Влияние легирующих элементов на отпуск стали.

После закалки выполняется обязательная термическая операция для повышения вязкости стали – отпуск. В процессе отпуска неравновесные фазы – мартенсит и остаточный аустенит – превращаются в феррит и цементит. Это превращение протекает диффузионным путем и зависит от температуры нагрева.

Влияние легирующих элементов на отпуск стали выражается количественно и качественно. Количественное влияние легирующих элементов – уменьшение скорости превращений и повышение температуры превращений (выделение углерода из Feα и коагуляция карбидов). Это наиболее заметно проявляется при введении хрома, ванадия, титана, вольфрама, молибдена, кремния. Поэтому температурные интервалы всех видов отпуска легированных сталей на 100–150 ºС выше по сравнению с углеродистыми.

Качественное влияние легирующих элементов – карбидные превращения (преобразование легированного цементита в специальные карбиды) и влияние вторичной твердости (превращение остаточного аустенита в мартенсит и выделение дисперсных карбидов).

Таким образом, легирование, изменяя скорости и температуру превращений, а также тепловые свойства стали, существенно влияет на режимы термической обработки. Основные особенности упрочняющей термической обработки легированных сталей по сравнению с углеродистыми заключаются в следующем:

· нагрев изделий производится с меньшей скоростью в связи с уменьшением теплопроводности сталей. Пониженная теплопроводность увеличивает перепад температур по сечению изделий, а следовательно, повышает и напряжения, вызывающие коробление и трещинообразование;

· температура нагрева для получения аустенита при введении карбидообразующих элементов повышается. Труднорастворимые карбиды сдерживают рост зерна аустенита и сохраняют его мелкозернистое состояние;

· охлаждение изделий возможно со значительно меньшей скоростью, так как процесс распада переохлажденного аустенита замедляется. Уменьшение критической скорости закалки позволяет охлаждать изделия в более мягком охладителе. Это уменьшает внутренние напряжения, коробление деталей, вероятность образования трещин;

· увеличивается прокаливаемость сталей, что позволяет упрочнять закалкой крупные изделия во всем сечении.

Дата добавления: 2016-11-04 ; просмотров: 31306 ;

Легирование сталей

При некоторых условиях эксплуатации стальных изделий и конструкций обычные физико-механические характеристики материал не удовлетворяют поставленным требованиям. В таких случаях стали легируют – добавляют при выплавке к исходному составу другие химические элементы (в основном – тоже металлы, хотя как будет показано далее, есть и исключения). В результате сталь становится прочнее, твёрже, устойчивее к внешним неблагоприятным факторам, хотя и теряет в своей пластичности, что в большинстве ситуаций ухудшает её обрабатываемость.

Технические требования к легированным сталям регламентированы ГОСТ 4543 (применительно к тонколистовому стальному прокату действует ещё ГОСТ 1542). В то же время ряд комплексно и сложнолегированных сталей производится согласно ТУ металлургических предприятий.

Легирование и примеси – есть ли разница?

С формальной точки зрения, некоторые химические элементы, содержащиеся в обычных сталях, как конструкционных, так и обычного качества, тоже можно называть легирующими. К таким можно отнести, например, медь (до 0,2%), кремний (до 0,37%) и т.д.


Причина заключается в том, что любая примесь является следствием либо чистоты исходной руды (марганец), либо специфики металлургических процессов плавки (сера, фосфор). Теоретически выплавленная без меди, фосфора и серы сталь обладала бы такими же механическими свойствами. Легирование же имеет своей конечной целью именно повышение определённых технических характеристик стали. При этом фосфор и сера однозначно относятся к вредным, но неизбежным примесям. Наличие меди увеличивает пластичность, зато способствует налипанию поверхности металла, имеющего избыточную (более 0,3%) концентрацию меди на поверхность смежной детали. При работе конструкции в условиях интенсивного трения это является крупным недостатком.

Наличие химического элемента с концентрацией более 1% даёт основание вводить его условное обозначение в марку стали. Кроме вышеупомянутой стали 65Г, подобной чести удостаивается также и алюминий (присутствующий, в частности, в стали О8Ю). В данном случае алюминий вводится в обычную конструкционную сталь О8 с целью её раскисления, а то, что при этом несколько повышаются показатели её пластичности, является лишь удачным сопутствующим обстоятельством. Борирование стали обеспечивает ей повышенную последующую деформируемость, поэтому даже микродобавки бора в химический состав стали отмечаются соответственно изменённой её маркировкой (например, в стали 20Р присутствует всего 0,001…0,005 % бора).

В целом принято, что:

  • Стали, содержащие только один, намеренно вводимый в состав элемент;
  • Стали, в составе которых имеются иные, кроме углерода и марганца, химические элементы в количестве не более 1%

— легированными не считаются. С другой стороны, если в составе выплавляемого сплава процентное содержание железа не превышает 55%, то такой материал уже не может называться легированной сталью.

Общая классификация легирующих элементов в сталях

Наличие легирующих элементов оказывает преобладающее влияние на вид диаграммы состояния системы «железо-углерод», и на наличие/отсутствие химических соединений в конечном продукте (нитридов, карбидов и более сложных по формуле компонентов). Последние, в свою очередь существенно видоизменяют микроструктуру стали.

В связи с этим, легирующие сталь металлы подразделяются на две группы:

  1. Металлы, которые увеличивают область твёрдых растворов на основе γ-железа (аустенитная область на диаграмме состояния), что приводит к повышению разнообразия конечной микроструктуры легированной стали после её упрочняющей термообработки). К таким элементам относятся никель, марганец, кобальт, медь, а также азот.
  2. Металлы и химические элементы, наличие которых сужает γ-область, зато повышает прочность стали. К ним относят хром, вольфрам. ванадий, молибден, титан.

В процессе получения легированных сталей изменяются следующие закономерности в её свойствах.

Как известно, разные элементы обладают различной кристаллической структурой (для металлов это – гранецентрированная и объёмноцентрированная). Само же железо имеет объёмноцентрированную решётку.

Именно по этой причине такой металл как цинк вводят в качестве легирующей добавки только в цветные металлы и сплавы. Ограниченное применение для целей легирования стали находят также химические элементы, которые неспособны образовывать при выплавке устойчивые химические соединения с углеродом, железом и азотом.

Зависимость характеристик стали от насыщения её определёнными химическими элементами окончательно ещё не изучено. Это объясняется тем, что при комплексном легировании каждый компонент может взаимодействовать по разному с другими, причём такие изменения закономерному объяснению часто не поддаются. Поэтому вопросы целесообразности применения того либо иного легирующего элемента разрешаются экспериментальным путём.

Доказанными считаются следующие положения:

  • Эффективность процесса повышается при увеличении растворимости азота и углерода в легирующей добавке, и в основном железе;
  • Стабильность окончательных свойств стали повышается при увеличении размеров аустенитной зоны;
  • Качество стали, легированной металлами и элементами с меньшим, чем у железа порядковым номером (в таблице химических элементов Д. Менделеева) хуже, чем в противоположном случае;
  • Более тугоплавкие, по сравнению с железом, металлы повышают прочность стали при любых вариантах её дальнейшей термообработки.

Впрочем, вторичные взаимодействия, сильно зависящие от способа выплавки стали, могут существенно корректировать эти положения. Поэтому на данном этапе с уверенностью можно говорить лишь о влиянии конкретных легирующих элементов на свойства стали.

Влияние хрома

Хром – металл, особенно часто применяемый для целей легирования. Его добавляют как в конструкционные стали (например, 20Х, 40Х), так и в инструментальные (9ХС, Х12М). При этом конечные свойства легированной хромом стали сильно зависят от его содержания в ней. При низких (менее 0,5…0,7%) концентрациях структура стали становится боле грубой, и чувствительной к направлению её последующей обработки, особенно при прокатке и гибке в холодном состоянии. Ухудшается также равномерность распределения основных составляющих микроструктуры.

Как уже было отмечено выше, одной из главных целей легирования является формирование в стали карбидов металлов, прочность и твёрдость которых заметно выше, чем основного металла. Хром образует два вида карбидов: гексагональный Cr7C3 и кубический Cr23С6, причём в обоих случаях прочность и хладостойкость стали возрастают. Особенностью карбидов хрома является присутствие в их структуре также и других элементов – железа и ванадия. В результате температура эффективного растворения снижается, что, в свою очередь, приводит к таким положительным особенностям сталей, легированных хромом, как прокаливаемость, возможность вторичного дисперсионного твердения и теплостойкость. Поэтому стали, легированные хромом, имеют увеличенную эксплуатационную стойкость при тяжёлых условиях своей эксплуатации.

Однако увеличение содержания хрома в стали приводит и к отрицательным последствиям. При его концентрации более 5…10% резко ухудшается карбидная однородность материала, что сопровождается нежелательными явлениями при её механической обработке: даже при нагреве пластичность стали невысока, поэтому при ковке с большими степенями деформации высокохромистые стали подвержены растрескиванию.

При чрезмерном карбидообразовании увеличивается также количество концентраторов напряжений, что негативно влияет на стойкость таких сталей к динамическим нагрузкам. Учитывая это, содержание хрома в сталях не должно превышать 5..6%.

Влияние вольфрама и молибдена

Действие этих легирующих добавок в сталях примерно одинаково, поэтому их рассматривают совместно. Вольфрам и молибден улучшают дисперсионное твердение сталей, что увеличивает их теплостойкость, особенно при длительной работе с повышенными температурами. Мартенситостареющие стали обладают уникальным комплексом свойств: они сочетают достаточную пластичность и вязкость с высокой поверхностной прочностью, а потому находят широкое применение в качестве инструментальных сталей, предназначенных для холодной объёмной штамповки с высокими степенями деформации. Причиной этому – формирование интерметаллидных соединений Fe2W и Fe2Mo3, которые способствуют последующему появлению специальных карбидов (чаще – хрома и ванадия). Поэтому часто, совместно с вольфрамом и молибденом стали легируют также и этими металлами. Примером служат инструментальные стали типа Х4В2М1Ф1, конструкционные 40ХВМФА и т.п.

Наиболее эффективно такое легирование для сталей, содержащих сравнительно большое количество углерода. Именно этим объясняется преимущественное применение сталей, содержащих вольфрам и молибден, для производства ответственных шестерён, валов и других деталей машин, работающих при сложных, резко циклических нагрузках. Наличие рассматриваемых легирующих компонентов улучшает закаливаемость сталей и способствует более устойчивым конечным характеристикам изделий, изготовленных из них.

Имеются и отрицательные стороны избыточного легирования данными металлами. Например, повышение концентрации молибдена более 3% способствует обезуглероживанию стали при нагреве, становится причиной хрупкого разрушения (особенно, если в составе такой стали присутствует в увеличенном — более 2% — количестве кремний). Предельное содержание вольфрама в стали – 10…12% — связано, главным образом, с резким повышением стоимости готового продукта.

Читать еще:  Срок годности сварочных электродов

Влияние ванадия

Ванадий чаще применяется как компонент сложного легирования. Его наличие придаёт легированным сталям более равномерную и благоприятную структуру, которая мало изменяется даже с термообработкой. Кроме того, ванадий стабилизирует γ-фазу, что увеличивает стойкость стали к напряжениям сдвига (как известно, именно при сдвиговых деформациях металлы имеют наименьшую прочность).

На твёрдость стали ванадий практически не влияет, это особенно заметно для конструкционных сталей, содержащих меньше углерода, чем инструментальные. В комплекснолегированных сталях ванадий увеличивает теплостойкость, что повышает их устойчивость от хрупкого разрушения. В этом смысле влияние ванадия противоположно влиянию молибдена. Особенностью термообработки легированных сталей, содержащих ванадий, считается невозможность выполнения высокого отпуска после закалки, поскольку последующая пластичность стали снижается. Поэтому в сталях, предназначенных для изготовления крупных деталей или поковок, процентное содержание ванадия ограничивается 3..4%.

Влияние кремния, марганца и кобальта

Кремний – единственный из неметаллов, «допущенный» к процессам легирования. Объясняется это двумя факторами – дешевизной элемента и однозначной зависимостью твёрдости от процентного содержания кремния в стали. Именно поэтому кремний часто применяется при выплавке недорогих низколегированных строительных сталей, а также сталей, для эксплуатационной долговечности которых важно оптимальное сочетание прочности и упругости. Чаще всего совместно с кремнием используется и марганец – примерами могут быть стали 09Г2С, 10ГС, 60С2 и т.д.

В инструментальных сталях кремний как легирующий компонент используется редко, и притом только в сочетании с другими металлами, которые нейтрализуют его отрицательные свойства – малую эксплуатационную пластичность и вязкость. Из таких сталей – в частности, 9ХС, 6Х3С и т.п. — изготавливают режущий и штамповый инструмент, для которого требуется сочетание высокой твёрдости и стойкости при резких нагрузках.

Как и кремний, кобальт при внедрении в структуру стали не образует собственных карбидов, зато в сложнолегированных сталях интенсифицирует их образование при отпуске. Поэтому кобальт применяется не самостоятельно, а в сочетании с такими металлами, как ванадий, хром, вольфрам, при этом, ввиду дефицитности кобальта его содержание обычно не превышает 2,5…3%.

Влияние никеля

Никель – единственный из легирующих компонентов сталей, который повышает её пластичность и снижает твёрдость. Поэтому одним никелем стали не легируют. Зато в сочетании с марганцем никель приводит к заметному повышению прокаливаемости стали, что очень важно при изготовлении крупных деталей машин, для которых важна высокая эксплуатационная долговечность. При этом наличие никеля снижает требования к точности соблюдения температурных интервалов термообработки.

Легирование никелем имеет и ряд особенностей. В частности, никель, не образуя собственных карбидов, способствует увеличению скоплений «чужих» карбидов по границам зёрен, в результате снижается теплостойкость, и повышается хрупкость в диапазоне 20…400 0 С. Поэтому процентное содержание никеля в легированных сталях строго увязывается с наличием в них марганца и хрома: при их наличии предельная концентрация никеля составляет 2%, а при их отсутствии – не более 0,5…1%.

Легированные стали для специальных областей использования содержат в себе и ряд других металлов (например, титан, алюминий и др.). Выбор вида стали диктуется эксплуатационными и финансовыми соображениями.

Информация о легирующих элементах стали

Каждый отдельный элемент придает стали в зависимости от его доли определенные специфические свойства. В случае присутствия нескольких элементов эффект может быть увеличен. Но существуют варианты сплавов, в которых отдельные элементы в отношении определенного поведения оказывают свое влияние не в одном направлении, а могут противодействовать друг другу. Наличие легирующих элементов в стали создает только предпосылку для желаемых свойств; их можно достичь лишь с помощью переработки и тепловой обработки. Ниже перечислены главные виды влияния, которые оказывают на сталь легирующие и сопутствующие элементы.

Алюминий (Al) Температура плавления 658° C

Это наиболее сильное, очень часто применяемое дезоксидационное и, кроме этого, денитрирующее средство; благодаря этому оно очень благоприятно воздействует на нечувствительность к старению. В небольших добавках он поддерживает образование мелких зерен. Поскольку Al образовывает с азотом нитриды высокой твердости, он является преимущественно легирующим элементом в азотированной стали. Он повышает стойкость к окалинам и поэтому часто добавляется в ферритную жаростойкую сталь. В нелегированной углеродной стали можно с помощью „алитирования“ (добавления Al в поверхность) повысить стойкость к окалинам. Al сильно суживает — зону. Из-за сильного повышения коэрцитивной силы алюминий является легирующим элементом в магнитотвердых сплавах железа, никеля, кобальта, алюминия.

Свинец (Pb) Температура плавления 327.4° C

Добавляется в автоматную сталь в содержании прибл. 0.2-0.5%, поскольку благодаря его чрезвычайно тонкому суспензионному распределению достигается образование краткой стружки и чистой поверхности разреза. Указанные содержания свинца практически не влияют на механические свойства стали.

Бор (B) Температура плавления 2300° C

Поскольку бор имеет большое эффективное поперечное сечение для абсорбции нейтронов, им легируют сталь для регуляторов и экранов в установках по атомной энергии. Аустенитная 18/8 CrNi-сталь может с помощью бора благодаря дисперсионному твердению получить более высокий предел текучести при растяжении и прочность, при чем уменьшается антикоррозионная стойкость. Вызванные бором выделения улучшают прочность высокожаропрочных типов аустенитной стали в зоне повышенных температур. В строительной стали этот элемент улучшает глубокую цементацию и вызывает, таким образом, повышения прочности зерна цементируемой стали. Следует рассчитывать на сокращение сварочных работ в легированной бором стали.

Хром (Cr) Температура плавления 1857° C

Cr делает сталь способной к закалке в масле и воздухе. Вследствие понижения необходимой для образования мартензитов критической скорости охлаждения он повышает закаливаемость и улучшает, таким образом, способность к повышению качества. Однако ударная вязкость уменьшается, но сокращает растяжение лишь немного. Свариваемость сокращается в чистой хромовой стали при увеличении содержания хрома. Прочность стали на растяжение повышается на 80-100 н/мм на каждый 1% Cr. Cr является образователем карбида. Его карбиды повышают стойкость к режущим инструментам и износостойкость. Термическая стойкость и стойкость к напорному водороду увеличиваются благодаря хрому. В то время, как увеличение содержания хрома повышает стойкость к окалинам, для антикоррозионной стойкости стали необходимо минимальное содержание хрома прибл. 13%, который должен быть растворен в матрице. Элемент отсекает зону и расширяет, таким образом, ферритную зону; стабилизирует аустенит в аустенитной стали Cr-Mn- или Cr-Ni. Теплопроводимость и электрическая проводимость уменьшаются. Тепловое расширение понижается (сплавы для впаивания в стекло). При одновременно более высоком содержании углерода содержание хрома до 3% повышает остаточный магнетизм и коэрцитивную силу.

Углерод (C) Температура плавления 3540° C

Углерод является наиболее важным и влиятельным легирующим елементом в стали. Наряду с углеродом каждая нелегированная сталь содержит кремний, марганец, фосфор и серу, которые добавляются при изготовлении непреднамеренно. Добавление дальнейших легирующих элементов для достижения особых эффектов, а также сознательное повышение содержания марганца и кремния вызывает образование легированной стали. При увеличении содержания углерода повышаются прочность и твердость стали, напротив его расширение, ковкость и обрабатываемость уменьшаются (режущими инструментами). Углерод практически не влияет на антикоррозионную стойкость к воде, кислотам и горячим газам.

Медь (Cu) Температура плавления 1084° C

Медь добавляется только к небольшому количеству сортов стали, поскольку она обогащается под слоем окалины и вследствие проникновения в пределы ядра вызывает большую нечувствительность поверхности при процессах тепловой деформации, поэтому она рассматривается частично как вредитель для стали. Предел текучести при растяжении и соотношение предела текучести при растяжении и прочности повышаются. Содержание выше 0.30% может вызвать дисперсионное твердение. Закаливаемость улучшается. Медь не влияет на сварочные работы. В нелегированной и слаболегированной стали благодаря меди достигается значительное улучшение стойкости к атмосферным явлениям.

Марганец (Mn) Температура плавления 1221° C

Марганец дезоксидирует. Он связывает серу как сульфиды марганца и сокращает, таким образом, неблагоприятное влияние сульфида железа. Это имеет особое значение при автоматной стали: опасность красноломкости уменьшается. Марганец очень сильно сокращает скорость охлаждения и, таким образом, повышает закаливаемость. Предел текучести при растяжении, а также прочность благодаря марганцу повышаются, кроме этого, марганец благоприятно влияет на ковкость и свариваемость и сильно увеличивает глубину прокаливемости. Содержание выше 4% вызывают также при медленном охлаждении образование хрупкой мартензитной структуры, так что легирующая зона почти не используется. Сталь с содержанием марганца выше 12% являются при одновременном высоком содержании углерода аустенитной, потому что марганец значительно расширяет зону. Такие виды стали получают при ударной нагрузке поверхности очень высокое холодное упрочнение, в то время, как ядро остается вязким; поэтому они при ударном воздействии имеют высокую износостойкость. Сталь с содержанием марганца выше 18% остаются немагнетизируемыми также после сравнительно сильной холодной обработки давлением и применяется как специальная сталь и как вязкая в холодном состоянии сталь при температурной нагрузке. Под влиянием марганца повышается коэффициент теплового расширения, в то время, как тепловая проводимость и электрическая проводимость понижаются.

Молибден (Mo) Температура плавления 2622° C

Молибден легируют преимущественно вместе с другими элементами. Вследствие сокращения критической скорости охлаждения улучшается закаливаемость. Молибден существенно уменьшает хрупкость отпуска, например, в хромо-никелевой и марганцевой стали, способствует образованию мелкого зерна и благоприятно влияет также на свариваемость. Повышение предела текучести при растяжении и прочности. При высоком содержании молибдена затрудняется ковкость. Сильный образователь карбида; благодаря этому улучшаются режущие свойства быстрорежущей стали. Он принадлежит к тем элементам, которые повышают антикоррозионную стойкость и поэтому часто используется в высоколегированной хромовой стали и аустенитной хромо-никелевой стали; высокое содержание молибдена уменьшает склонность к сквозной коррозии. Очень сильное сужение зоны; повышение теплостойкости, стойкость к окалинам сокращается.

Никель (Ni) Температура плавления 1453° C

Вызывает в строительной стали значительное повышение ударной вязкости образца с надрезом и поэтому легируется для повышения вязкости в цементируемой, улучшенной и вязкой в холодном состоянии стали. Все точки преобразований (A1-A4), понижаются под влиянием никеля; он является образователем карбида. Благодаря сильному расширению зоны никель в химически стойкой стали с содержанием больше 7% придает аустенитную структуру до уровня ниже комнатной температуры. Сам никель с высоким процентным содержанием делает сталь только инертной к коррозии, в аустенитной хромо-никелевой стали создает стойкость к влиянию восстанавливающихся химикатов; стойкость этих видов стали достигается благодаря хрому. Аустенитная сталь имеет при температурах выше 600° C более высокую теплостойкость, поскольку температура её рекристаллизации высокая; она практически не намагничивающаяся. Тепловая проводимость и электрическая проводимость сильно уменьшаются. Высокое содержание никеля в точно ограниченных легирующих зонах создают физическую сталь с определенными физическими свойствами, например, температурное расширение (тип инвар).

Фосфор (P) Температура плавления 44° C

Рассматривается преимущественно как вредитель стали, поскольку фосфор вызывает сильную первичную сегрегацию при затвердении плавки и возможность вторичной сегрегации в твердом состоянии вследствие сильного отсекания зоны. Вследствие сравнительно небольшой скорости диффузии, как и в альфа-, так и в гамма–твёрдом растворе (смешанном кристалле) указанные сегрегации могут с трудом уравновешиваться. Поскольку вряд ли возможно достичь гомогенного распределения фосфора, стремятся удерживать содержание фосфора на очень низком уровне и соответственно в высококачественной стали достигать верхний предел 0.03-0.05%. Размер сегрегации нельзя определить с точностью. Фосфор повышает уже в минимальном содержании чувствительность к хрупкости отпуска. Фосфорная хрупкость увеличивается при увеличении содержания углерода, при увеличении температуры твердения. Размера зерна и при уменьшении степени уковки. Хрупкость появляется как хладноломкость и чувствительность к ударной нагрузке (склонность к хрупкому разрушению). В слаболегированной строительной стали с содержанием углерода прибл. 0.1% фосфор повышает прочность и антикоррозионную стойкость к атмосферным явлениям; медь поддерживает улучшение антикоррозионной стойкости (инертная к коррозии сталь). Добавки фосфора в аустенитную хромо-никелевую сталь вызвать повышение предела текучести при растяжении и эффекты выделения.

Сера (5) Температура плавления 118 С

Из всех примесей в стали даёт самую сильную ликвацию. Сульфид железа приводит к красноломкости, или «горячеломкости». поскольку низкоплавкая сульфидная эвтектика в виде сетки охватывает кристаллиты, так что имеет место низкое сцепление последних, и при горячей деформации преимущественно разрушаются границы зерен; эффект усиливается под действие кислорода. Сера имеет особенно высокое сродство к марганцу, ее связывают в виде сульфида марганца, поскольку из всех присутствующих обычно включений он является наименее опасным, распределен в стали точечно и имеет высокую температуру плавления. Сера в среднем существенно снижает вязкость. Серу намеренно добавляют в сталь автоматной обработки в количестве до 0.4%, поскольку благодаря смазывающему действию на режущую кромку уменьшение трения между заготовкой и инструментом позволяет достичь повышения его стойкости. Кроме того, у
автоматных сталей при обработке резанием образуется короткая стружка. Сера усиливает склонность к образованию сварочных трещин.

Читать еще:  Образец заполнения журнала сварочных работ трубопроводов

Кремний (5i) Температура плавления 1414 С

Кремний, аналогично марганцу, содержится в любой стали, так как уже железные руды в зависимости от состава вносят его соответствующее количество. Также и собственно при производстве стали кремний из огнеупорной футеровки печи переходит в расплав. Однако кремнистыми называют только такие стали, которые содержат более 0.40% кремния. Кремний не является металлом, но так называемым металлоидом, как, например, фосфор и сера. Кремний раскисляет. Он благоприятствует выпадению графита и сильно сужает гамма-область, повышает
прочность и износостойкость (кремниймарганцовые улучшаемые стали); сильное повышение предела упругости, поэтому целесообразен в качестве легирующей добавки в пружинные стали. Кремний значительно повышает окалиностойкость, так что им легируют жаростойкие стали. Однако вследствие отрицательного влияния на деформацию в горячем и холодном состоянии допустимые содержания ограничиваются. При 12% кремния достигается дополнительная кислотостойкость, однако такие марки могут быть изготовлены только в виде очень твердых и хрупких
отливок, которые могут быть обработаны только шлифованием. Вследствие сильного снижения электропроводности, коэрцитивной силы и активных потерь кремний используется в электротехнических листовых сталях.

Азот (N) Температура плавления –210° C

Этот элемент может проявляться как вредитель для стали, и как легирующий элемент. Вредитель из-за уменьшения вязкости вследствие процессов выделения, увеличения чувствительности к старению и синеломкости (деформация в диапазонах голубой теплоты 300-350° C), а также из-за возможности появления межкристаллитного коррозионного растрескивания в нелегированой и низколегированной стали. В качестве легирующего элемента азот расширяет зону и стабилизирует аустенитную структуру; повышает в аустенитной стали прочность и прежде всего предел текучести при растяжении, а также механические свойства в теплоте. Азот позволяет получить высокую твердость поверхности благодаря образованию нитридов при нитрировании (нитрирование).

Титан (Ti) Температура плавления 1680° C

Благодаря своему высокому химическому сродству с кислородом, серой и углеродом имеет сильное дезоксидирующее действие, сильное денитрирующее действие, серообразующее и сильное карбидобразующее действие. Широко используется в стойкой к коррозии стали в качестве образователя карбида для стабилизации по отношению к межкристаллитной коррозии; имеет, кроме этого, зерноизмельчающие свойства. Tитан очень сильно сужает y-зону. Он в более высоких долях вызывает процессы выделения и благодаря достижению высокой коэрцитивной силы добавляется в магнитотвердые сплавы. Титан повышает длительную прочность благодаря образованию специальных нитридов. Однако титан имеет сильную склонность к сегрегации и образованию строк.

Ванадий (V) Температура плавления 1910° C

Измельчает первичное зерно и, таким образом, структуру литья; сильный образователь карбида, вследствие чего появляется увеличение износостойкости, режущей способности и теплостойкости; поэтому предпочитается использование в качестве дополнительного легирующего элемента в быстрорежущей, теплообрабатываемой и теплостойкой стали. Значительное улучшение твердости после отпуска, уменьшение чувствительности к перегреву. Поскольку ванадий измельчает зерно и вследствие образования карбида тормозит воздушную закалку, он повышает ковкость улучшенной стали. Благодаря образованию карбида повышение стойкости к напорному водороду. Ванадий сужает – зону и перемещает коэффициент Кюри к более высоким температурам.

Легированная сталь — виды, характеристика, легированный лом

Всем известно отличие стальных конструкций от чугунных аналогов. Фактически, две раз новидности черного металла различаются по концентрации углерода относительно железа. Предельная величина концентрации углерода составляет 2.14% и выбрана не случайно. Это пороговое значение растворимости элемента C в аустените – высокотемпературной модификации Fe с гранецентрированной решеткой. Современные технологии позволяют преодолевать предельное значение: содержание углерода в высокоуглеродистых сталях составляет до 3.4%.

Впрочем, суть эпилога в другом: сталь – это легированное углеродом железо, а добавление других металлов, позволяет управлять свойствами черного металла. Процесс аналогичен игре ребенка с конструктором, когда, зачастую, только практический эксперимент позволяет определить эффективность легирования. Действительно, влияние легирующих элементов на свойства стали — часто остается на эмпирическом уровне и не следует определенной логике. Исключение составляет, пожалуй, только Ванадий – элемент, добавление которого к стали позволяет улучшить такие характеристики, как ковкость и твердость.

Легированные стали классификация и маркировка

Базовая сортировка низкоуглеродистого железа позволяет разделить его на две разновидности. Фактически, основная классификация легированных сталей ведется по способу их использования:

  1. Конструкционные. Сталь, используемая при изготовлении деталей, узлов и конструкций.
  2. Инструментальная. Металл характеризуется содержанием углерода на уровне 0.9 – 1.4%. Дополнительные легирующие элементы в сталях инструментальных: хром, ванадий, вольфрам, кремний, марганец и прочие. Суммарная концентрация примесей, исключая углерод, не превышает 5%. Используются в производстве инструмента ударного и режущего воздействия.

Классификация легированных сталей по назначению

Первый вопрос общего плана что значит легированная сталь? Уже получил ответ выше. Это разновидность низкоуглеродистого железа, имеющая внедрения других металлов для улучшения определенных параметров. Этот термин дает ответ и на следующий вопрос: для чего в сталь вводятся легирующие элементы? Таким образом, разобравшись, что такое легированная и нелегированная сталь можно перейти к рассмотрению двух базовых разновидностей этого металла.

Маркировка легированных сталей

Конструкционные легированные стали

Толстостенные трубы из конструкционной стали

Классификация этого вида низкоуглеродистого железа достаточно обширна. Среди параметров, определяющих сортировку конструкционной стали присутствуют:

  • форма и габариты;
  • процентная масса легирующих элементов;
  • химический состав и базовая примесь;
  • качество металла, его поверхности (две различные категории);
  • вид обработки.

В частности, различают такие виды проката конструкционной легированной стали: круглый (марка 40х), квадратный, шестигранный, профильный под косые шайбы и полосы. Также, согласно ГОСТ 1113-88, конструкционная сталь производится в виде кованых прутков квадратного и круглого сечения. Обособленная разновидность этого вида легированного черного метала – сталь со специальной отделкой поверхности (ГОСТ 14955).

Разобраться какие стали называются легированными (конструкционный металл) поможет ГОСТ 4543-71. Соответственно этому документу изготовляется конструкционное низкоуглеродистое железо. Таким образом, вопрос «дайте определение легированных сталей», сводится к ассортименту добавок, вводимых в металл для улучшения его характеристик. Это: азот, хром, кремний, бор, тугоплавкие металлы. Дополняют ряд никель, медь, алюминий и прочие цветные металлы.

Рассматривая конструкционные легирующие стали, следует обратить внимание на такой критерий, как общее содержание примесей. Он сортирует металл на три класса:

  • высоколегированный – доля добавок более 10%;
  • умеренный от 2.5 до 10%;
  • низкое содержание примесей — менее 2,5%.

Во всех случаях указывается массовый процент легирующей добавки.

Химический состав – еще один фактор классификации. Классификация конструкционной легированной стали, разделяющий ее на качественную, высококачественную, маркируемую литерой «А» и металл электрошлакового переплава — особо высококачественная разновидность с ведущей «Ш» в маркировке.

Аналогично качеству химического состава, различают три категории легированной конструкционной стали, соответственно качеству обработки поверхности. Дополнительный критерий сортировки в этом случае – вид обработки. Это, во-первых, кованый или горячекатаный прокат, калиброванный металл, а также сталь со специальной отделкой поверхности.

Уровень термической обработки отражает маркировка легированных сталей. В частности, литера «Т» говорит о термически обработанном металле, «Н» – нагартованном. Обозначение легирующих элементов в стали указывается после содержания углерода (первая пара цифр).

Нагартовка — это упрочнение металлов и сплавов вследствие изменения их структуры и фазового состава в процессе пластической деформации при температуре ниже температуры рекристаллизации (определение из Википедии)

Дополнительные обозначения легированных сталей указывают на следующие особенности:

  1. По степени раскисления. Параметр напрямую зависит от процентного вхождения кремния. Стали содержащие не более 0.07% называют кипящими, свыше 0.12% — спокойными. Интервал 0.07 – 0.12% соответствует полуспокойным маркам металла.
  2. Непосредственно маркировка. Формируется из нескольких элементов. Первый – буквенное обозначение Б или В (группа А не обозначается) с последующим «Ст». Например, Ст1кп2; БСт2пс; ВСт6сп3. Второй – цифра, соответствующая номеру ГОСТ. Третий символ: буква «Г», присутствие которой указывает на повышенно содержание марганца. Далее идут степень раскисления металла и номер категории стали.
  3. Применение. Параметр, указывающий, где используют легированные конструкционные стали. Маркировки Ст1, Ст2 отводятся под проволоку и изделия из прутков: гвозди или заклепки. Крепежные детали обозначаются Ст3, Ст4 а осевые элементы или валы под слабой нагрузкой – Ст5, Ст6.

Альтернативная классификация конструкционных сталей по сфере использования, разделяет металл на подшипниковый, рессорно-пружинный и теплоустойчивый. В первых двух случаях наименования говорят сами за себя, тогда как последний вариант соответствует металлу, сектор применения которого — энергетическое машиностроение. Подобные конструкционные стали используются в производстве котлов, паронагревателей или сосудов.

Инструментальные легированные стали

Инструментальные легированные стали

Данный вид низкоуглеродистого железа обладает иными приоритетным параметрами, сосредоточенными на высоких показателях твердости и износостойкости. Обе характеристики улучшаются с повышением концентрации углерода в металле.

Первоочередно вопрос, затрагивающий легированные стали – применение этого вида металла. Область использования, как указывалось ранее, соответствует названию категории. Подобная сталь – это материал для производства трех основных групп инструментов:

Первая категория объединяет резцы, фрезы, долбяки. К ней относится и класс быстрорежущей стали, отличающейся красностойкостью, а также сохранением режущих характеристик при нагреве до температуры 700 0 С. Другая отличительная особенность быстрорежущей стали – скорость обработки металла, превышающая аналогичный параметр обычных инструментальных марок в пять раз. Маркировка быстрорежущих марок производится литерой «Р», где последующие цифры указывают процентное вхождение вольфрама.

Документ, описывающий инструментальные легированные стали — ГОСТ 5950 – 73. Данная разновидность обладает улучшенной теплостойкостью, диапазон значений данного параметра переносится в интервал 250 – 300 0 С. Увеличение данной характеристики сказывается на скорости резания, повышая ее значение на 20 – 40%.

Рассматривая, как влияют легирующие элементы на свойства стали, остановимся на нескольких элементах.

Кремний, марка – 9ХС. Введение элемента в состав инструментальной стали повышает ее прокаливаемость до 40 мм. Дополнительный эффект связан с улучшением стойкости мартенсита при отпуске. Впрочем, элемент приносит и отрицательные нюансы в легируемый металл. Стали, содержащие кремний плохо поддаются резанию.

Изделия из легированной конструкционной стали

Марганец, марки – ХВГ, 9ХВСГ. Легирование этим металлом приводит к снижению деформации инструмента в процессе закалки. Наиболее эффективен данный тип легирования для протяжек – инструментов, обладающих большим соотношением длины к диаметру поперечного сечения.

Хром. Легирование элементом применяется для улучшения твердости стали после закалки.

Легированный металлолом

Обзор рынка легированного лома касается не только стали, но и чугуна. Действительно, доля объявлений купим легированный лом чугуна, не особо уступает спросу на вторичное низкоуглеродистое железо. Прием легированного лома осуществляется практически всеми пунктами, работающими с черным металлом, однако по существенно более высокой стоимости.

Стоит понимать: для пунктов приема металлолома такого разделения по легированным сталям нет (как в справочнике) — для них есть черный лом, лом нержавеющей стали и лом быстрорезов. Если с нержавейкой и быстрорезом все понятно, то в черный лом могут включаться такие стали, как: 09Г2с и другие марки, которые востребованы в данном конкретном регионе. Некоторые предприятия специализированно закупают лом стали из 09г2с.

Естественно, учитывая специфику легированных отходов и лома легированной стали, цена такого лома за килограмм определяются вхождением определенных металлов — легирующих элементов. Например, вторичная сталь, с содержанием никеля более 9.3%, может приниматься до 60 рублей за кг, тогда как более низкая концентрация Ni, приравнивает отходы к обычному черному стальному лому – 11000 за тонну.

Особую ценность представляют быстрорежущие марки, ценность которых даже в виде металлолома существенно выше. Однако сами по себе отходы быстрорезов многие приемщики разделяют на две категории. К первой группе относятся марки Р6М5, Р18, применяемые для обработки металлов, тех же легированных конструкционных сталей. Вторая – включает сорта Р9 и Р12, используемые для работ по камню и менее твердым материалам — см. статью лом быстрорежущей стали.

Лом быстрорежущей стали

Таким образом, стоимость лома легированной стали определяется в основном парой параметров: содержание и тип добавки, а также качество самой стали. С другой стороны, лом быстрорезов, в отличие от других стальных отходов, может быть использован как деловой. Многие инструменты, даже отработав эксплуатационный ресурс, остаются привлекательными для дальнейшего использования. Сфера их применения может включать как бытовой сектор, так и небольшие частные предприятия.

Видео — как делают нержавеющую сталь

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]