Влияние хрома на свойства стали

Влияние легирующих элементов на свойства стали

прочности приобретает после отпуска при 550°; между тем сопротивление удару в первом случае 10, а во втором — 7 кгм/см 2 .

Таким образом, следует считать, что кремний в количестве примерно до 1,5% оказывает скорее положительное влияние на свойства улучшенной стали; кремнистые стали, содержащие до 1,5% Si, при обработке на одинаковую твердость с нелегированными обладают несколько более высоким запасом вязкости, а при равной температуре отпуска превосходят нелегированную сталь по показателям прочности, уступая ей, однако, в отношении вязкости. Вместе с тем введение в улучшаемую сталь значительного количества кремния (более 2% Si) сопровождается ухудшением ее вязкости и температурного запаса вязкости.

Марганец. На рис. 191 показано влияние марганца на предел прочности и относительное удлинение улучшенной стали с различным содержанием в ней углерода. Из рисунка видно, что с увеличением содержания в стали марганца предел прочности несколько возрастает, а относительное удлинение, наоборот, снижается. Характерно, что чем ниже содержание в стали углерода, тем заметнее действие марганца.

Влияние марганца на общий комплекс механических свойств улучшенной стали с одинаковым содержанием углерода показано по данным автора в табл. 68. Увеличение содержания марганца с 0,45 до 1,35% сравнительно слабо отражается на механических свойствах стали, содержащей 0,25—0,28% С; при более высоком содержании марганца (до 2,79%) наблюдается существенное повышение показателей прочности при одновременном значительном снижении пластичности и ударной вязкости.

Более заметно влияние марганца в случае испытания на удар при отрицательных температурах. На рис. 192 по данным автора показано влияние марганца на ударную вязкость образцов, обработанных на твердость 228—217 Нв при различных температурах испытания. Как видно из приведенных данных, увеличение содержания марганца с 0,45 до 1,35% вызывает некоторое повышение температурного запаса вязкости, но и в этом случае сталь с 2,79% Мп обнаружила высокую склонность к хрупкому разрушению.

Отрицательный эффект влияния повышенных количеств марганца на вязкость термически улучшенной стали с 0,35—0,40 % С был установлен также В. Д. Садовским и Н. П. Чупраковой, которые сделали вывод, что «только при содержании марганца, не превышающем 1,5%, можно рассчитывать на хорошую ударную вязкость».

Существуют, однако, указания о том, что при низком содержании в стали углерода присутствие значительных количеств марганца (до 3—5%) не вызывает ухудшения вязкости термически улучшенной стали.

На рис. 193 показано влияние марганца на механические свойства стали с различным содержанием углерода после закалки с 900° и высокого отпуска при одинаковой температуре. В случае содержания углерода в пределах 0,09—0,14%, даже при 4% Мп, ударная вязкость неизменно сохраняется на весьма высоком уровне, в то время как предел прочности и предел текучести возрастают.

В стали с 0,25—0,37% С увеличение содержания марганца выше 3% сопровождается снижением вязкости. И. Е. Конторович считает, что: «стали с низким содержанием углерода (0,12—0,15%) и 3—5% марганца имеют высокие механические -свойства. Резкое снижение вязкости обнаруживается только у сталей с более высоким содержанием углерода при таком же содержании марганца».

Аналогичного мнения придерживаются и некоторые другие авторы.

Таким образом, в термически улучшаемых сталях отрицательное влияние больших количеств марганца обнаруживается только в присутствии значительного количества углерода, при

чем чем ниже содержание углерода, тем выше может быть допущено содержание в стали марганца. По крайней мере, при содержании до 1,8—2,0% Мп еще нельзя констатировать вредного его действия на среднеуглеродистую конструкционную сталь

(0,2—0,4% С). Это подтверждается также широким опытом использования марганцовистых сталей в промышленности.

Хром. Влияние хрома на механические свойства стали после закалки и высокого отпуска показано в табл. 69. Из данных таблицы видно, что в стали, отпущенной при 600°, увеличение содержания хрома сопровождается повышением прочности и некоторой потерей вязкости при сохранении пластичности примерно на одном уровне. Влияние хрома несколько ослабевает в случае отпуска стали при 650°. Это объясняется тем, что хром замедляет выделение и коагуляцию карбидов при отпуске, несколько повышает температуру рекристаллизации а-фазы и потому заметно задерживает разупрочнение стали при 600°. Однако эффект его действия резко ослабляется при 650°, поскольку температурный район отпуска в этом случае оказывается сильно смещенным от тех зон, в которых развивается карбидообразование (500—550°), а также рекристаллизация (550—600°) ос-фазы в хромистых сталях при отпуске.

Ввиду того, что с повышением содержания хрома при одинаковой температуре отпуска показатели прочности возрастают, истинное влияние хрома на ударную вязкость оказывается «замаскированным». Более надежные представления о действии хрома на ударную вязкость могут быть получены путем сравнения свойств при условии одинаковой прочности или твердости стали.

На рис. 194 показано влияние хрома на ударную вязкость стали с различным содержанием углерода, обработанной на предел прочности, равный 100 кг/мм 2 . Из рисунка видно, что при

Автор: Администрация Общая оценка статьи: Опубликовано: 2011.02.21 Обновлено: 2020.03.04

Влияние основных легирующих элементов на свойства стали.

Влияние отдельных компонентов на свойства стали

Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, А1, В, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15. 20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых сталей.

Влияние примесей

Постоянные (технологические) примеси являются обязательными компонентами сталей и сплавов, что объясняется трудностью их удаления как при выплавке (Р,S). Так и в процессе раскисления (Si, Mn) или из шихты — легированного металлического лома (Ni, Cr и др.).

К постоянным примесям относят углерод, марганец, кремний, серу, фосфор, а также кислород, водород и азот.

Углерод

При увеличении содержания углерода до 1,2% возрастают прочность, твердость, порог хладноломкости (0,1%С повышает температуру порога хладноломкости на 20С), предел текучести, величина электрического сопротивления и коэрцитивная сила. При этом снижаются плотность, теплопроводность, вязкость, пластичность, величины относительных удлинения и сужения, а также величина остаточной индукции.

Существенную роль играет то, что изменение физических свойств приводит к ухудшению целого ряда технологических характеристик — таких, как деформируемость при штамповке, свариваемость и др. Так, хорошей свариваемостью отличаются низкоуглеродистые стали. Сварка средне и особенно высокоуглеродистых сталей требует применения подогрева, замедляющего охлаждение, и других технологических операций, предупреждающих образование трещин.

Читать еще:  Кованые калитки своими руками

Марганец

Марганец вводят в стали как технологическую добавку для повышения степени их раскисления и устранения вредного влияния серы. Марганец считается технологической примесью, если его содержание, не превышает 0,8%. Марганец как технологическая примесь существенного влияния на свойства стали не оказывает.

Кремний

Кремний также вводят в сталь для раскисления. Содержание кремния как технологической примеси обычно не превышает 0,37%. Кремний как технологическая примесь влияния на свойства стали не оказывает. В сталях, предназначенных для сварных конструкций, содержание кремния не должно превышать 0,12-0,25%.

Сера

Пределы содержания серы как технологической примеси составляют 0,035-0,06%. Повышение содержания серы существенно снижает механические и физико-химические свойства сталей, в частности, пластичность, ударную вязкость, сопротивление истиранию и коррозионную стойкость. При горячем деформировании сталей и сплавов большое содержание серы ведет к красноломкости. Кроме того, повышенное содержание серы снижает свариваемость готовых изделий.

Фосфор

Пределы содержания фосфора как технологической примеси составляют 0,025-0,045%. Фосфор, как и сера, относится наиболее вредным примесям в сталях и сплавах. Увеличение его содержания, даже на доли процента, повышая прочность, одновременно повышает текучесть, хрупкость и порог хладноломкости и снижает пластичность и вязкость. Вредное влияние фосфора особенно сильно сказывается при повышенном содержании углерода.

Кислород и азот

Кислород и азот растворяются в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (оксидами, нитридами, газовой фазой). Они оказывают отрицательное воздействие на свойства, вызывая повышение хрупкости и порога хладноломкости, а также снижают вязкость и выносливость. При содержании кислорода более 0,03% происходит старение стали, а более 0,1% — красноломкости. Азот увеличивает прочность и твердость стали, но снижает пластичность. Повышенное количество азота вызывает деформационное старение. Старение медленно развивается при комнатной температуре и ускоряется при нагреве до 250oС.

Водород

Увеличение его содержания в сталях и сплавах приводит к увеличению хрупкости. Кроме того, в изделиях проката могут возникнуть флокены, которые развивает водород, выделяющийся в поры. Флокены инициируют процесс разрушения. Металл, имеющий флокены, нельзя использовать в промышленности.

Влияние легирующих элементов

Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15-20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых.

Все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости.

Классификация

По применимости для легирования можно выделить три группы элементов. Применимость для легирования различных элементов определяется не столько физическими, сколько, в основном, экономическими соображениями.

Легирующие элементы по механизму их воздействия на свойства сталей и сплавов можно разделить на три группы:

  • влияние на полиморфные (альфа-Fe -> гамма-Fe) превращения;
  • образование с углеродом карбидов (Сг,Fе)7С3; (Сг,Ре)23С6; Мо2С и др.;
  • образование интерметаллидов (интерметаллических соединений) с железом — 7Мо6; Fe3Nb и др.

По характеру влияния на полиморфные превращения легирующие элементы можно разделить на две группы:

  • элементы (Cr, W, Mo, V, Si, Al и др.), достаточное содержание которых обеспечивает существование в сталях при всех температурах легированного феррита (ферритные ставы);
  • элементы (Ni, Mn и др.), стабилизирующие при достаточной концентрации легированный аустенит при всех температурах (аустенитные сплавы). Сплавы, только частично претерпевающие превращение гамма->альфа, называются, соответственно, полуаустенитными или полуферритными.

Легирование феррита сопровождается его упрочнением. Наиболее значительно влияют на его прочность марганец и хром. Причем чем мельче зерно феррита, тем выше его прочность.
Многие легирующие элементы способствуют измельчению зерен феррита и перлита в стали, что значительно увеличивает вязкость стали. Однако все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости. Никель понижает порог хладноломкости.
Легированный аустенит парамагнитен, обладает большим коэффициентом теплового расширения. Легирующие элементы, в том числе азот и углерод, растворимость которого в аустените при нормальной температуре достигает 1%, повышают его прочность при нормальной и высокой температурах, уменьшают предел текучести.
Легированный аустенит является основной составляющей многих коррозионностойких, жаропрочных и немагнитных сплавов. Он легко наклепывается, то есть быстро и сильно упрочняется под действием холодной деформации.
Легирующие элементы (исключение кобальт), повышая устойчивость аустенита, снижают критическую скорость закалки и увеличивают прокаливаемость. Для многих аустенитных сплавов критическая скорость закалки снижается до 20°С/с и ниже, что имеет большое практическое значение.
Карбидообразующие элементы: Fe — Mn — Cr — Mo — W — Nb — V — Zr — Ti (за исключением марганца) препятствуют росту зерна аустенита при нагреве. Сталь, легированная этими элементами, при одинаковой температуре сохраняет более высокую дисперсность карбидных частиц, и соответственно большую прочность.
Интерметаллиды образуются при высоком содержании легирующих элементов между этими элементами или с железом. Примером таких соединений могут служить Fe7Mo6, Fe3Nb2 и др. Интерметаллиды, как правило, отличают повышенные твердость и хрупкость.

В следующей таблице показано влияние наиболее применяемых легирующих элементов на свойства стали.

Промышленное применение хрома для легирования сталей, чугунов и сплавов

Легирование хромом сталей

Более 60% всего мирового потребления промышленного хрома используется для нужд черной металлургии, где он, благодаря относительной дешевизне и простоте получения, применяется в качестве одного из основных элементов для легирования сталей и чугунов. При этом легированные хромом стали, сохраняя базовые эксплуатационные характеристики, дополнительно обретают присущие Cr полезные свойства в виде высоких показателей:

  • твердости;
  • коррозиестойкости;
  • жаропрочности.

Легированными называются стали, содержащие, помимо С и других обычных примесей, добавки определенного количества легирующих металлов (Cr, Ni, Mo и др.), а также Mn и Si в дозировках 0,83…1,22 %.

Сообразно объемному содержанию легирующей композиции такие стали подразделяют на три большие группы:

  • низколегированные (суммарное количество легирующего компонента ≤ 2,51 %);
  • легированные (2,51…10,2 %);
  • высоколегированные (> 10 %).

В свою очередь, по признаку целевой эксплуатации, легированные стали могут быть:

  • конструкционными;
  • инструментальными;
  • принадлежать к категории сталей специального назначения.

Конструкционные легированные стали

маркируют при помощи цифр и буквенных аббревиатур (напр. 15Х, 10Г2СД, 20Х2Н4А и т.д.). Двузначное цифровое сочетание в начале марки отображает среднее содержание С в сотых долях %. Большой буквой русского алфавита обозначается название легирующего элемента, в частности: Б – (Nb), Н – (Ni), Ф – (V), В – (W), М – (Mo), Х – (Cr), Г – (Mn), П – (P), Ц – (Zr), Д – (Cu), Р –(B), Ч – редкозем, Е – (Se), С – (Si), Ю – (Al), К – (Co), Т – (Ti), А – (N) только в середине обозначения.

Цифровые значения после буквенной аббревиатуры указывает на процентное содержание легирующего элемента. Если же цифры отсутствуют, то это значит, что концентрация легирующего элемента – ≤ 1,5 %.

Читать еще:  Как работать лобзиком по дереву

Основной объем легированных конструкционных сталей выплавляют в категории качественных (напр. 30ХГС).

Если в конце названия марки расположена буква «А», это значит, что данная сталь причисляется к категории высококачественных легированных сталей (напр. 30ХГСА).

Наличие буквы «А» в середине марки (напр. 16Г2АФ), говорит о том, что данная сталь была также подвергнута легированию азотом.

Буква «Ш» после черточки в конце названия марки свидетельствует о ее принадлежности к категории особовысококачественных легированных сталей (напр. 30ХГС-Ш, 30ХГСА-Ш).

Если конструкционная легированная сталь является литейной, в конце обозначения марки добавляется буква «Л» (напр. 15ГЛ, 40ХНЛ и т.д.).

Конструкционные легированные хромистые стали (0,6…1,6 % Cr), характеризуются повышенными пределами прочности, твердости и пластичности в сочетании с высокой хладостойкостью. Наличие хрома способствует также снижению относительного удлинения. Так, предел прочности обычной стали 40 составляет 580 МПа, текучести – 340 МПа, показатель относительного удлинения – 19 %. В хромистой же стали марки 40Х значения аналогичных показателей изменяются, соответственно, до 1000 МПа, 800 МПа и 13 %. Такие стали незаменимы в производстве валов, зубчатых колес, толкателей, червячных передач, метизов и другой промышленной продукции.

Конструкционные стали легированные хромом

Инструментальные стали, легированные Cr

В марках сталей данного назначения (напр. 9ХФ, 7X3, 3Х2В8Ф и др.) начальная цифра обозначает среднее содержание С в десятых долях %, при условии, что в стали его содержится 10 %).

В зависимости от преобладания содержащихся в составе чугуна элементов легированные чугуны условно подразделяют на классы:

  • хромистых;
  • никелевых;
  • силицидных;
  • алюминиевых и т.д.

Чугуны легированные хромом

Каждый из легирующих элементов обогащает чугун собственными специфическими свойствами.

Cr –– основной легирующий элемент – выполняет ферритообразующую и карбидообразующую функцию, обеспечивая, к тому же, высокие показатели износо-, коррозие- и термостойкости хромистых чугунов.

Придание чугунам износостойких характеристик обеспечивается благодаря наличию в их структуре карбидной упрочняющей фазы. Критерием определения степени износостойкости является обеспечиваемый карбидной фазой уровень твердости. Наивысшая износостойкость присуща чугунам, имеющим в своем составе карбиды (Cr, Fe, Mn)7С3, в два раза более твердые, чем карбиды цементитного типа. Минимальное количество содержащегося в чугуне Cr, необходимое для образования карбидов (Cr, Fe, Mn)7С3 при 3% содержании С, может колебаться в довольно широком диапазоне (11…28%).

В экономно легированных чугунах (до 2,5 % Mn и 1,5 % Ni) при 3% С содержание Cr, необходимое для получения 100 % карбидов (Cr, Fe, Mn)7С3, должно составлять >17 %.

Для того, чтобы придать высокую коррозионную стойкость чугуну, эксплуатируемому без дополнительной термообработки, требуется введение в его состав ≥ 22 % Cr при 3% содержания С.

Ni в составе чугуна, являясь аустенитообразующим элементом, способствует повышению характеристик вязкости, пластичности и устойчивости к коррозии.

Mn в составе легирующей композиции выполняет, главным образом, функцию стабилизирующего элемента и катализатора, делая процессы карбидообразования и аустенитизации более интенсивными и ровными.

Согласно ГОСТ 7769-82 наличие тех или иных специальных свойств чугуна и процентный состав химических элементов в легирующей композиции отображает маркировка. Так, например, ИЧХ4Г7Д – марка износостойкого чугуна, легированного 4% Cr, 7% Mn и до 1% Cu; ЖЧХ2,5 – марка жаростойкого чугуна, легированного 2,5% Cu; ЧХ32 – марка хромистого чугуна с содержанием до 32% Cr; ЧН19Х3Ш – марка чугуна никелевого жаропрочного, в составе которого наличествуют 19% Ni, 3% Cr с шаровидным графитом и т.д.

Легированные чугуны со специальными свойствами, в т.ч. хромистые, являются универсальным конструкционным материалом, применяемым во многих отраслях промышленности. Их широко используют при изготовлении работающих в условиях интенсивного коррозионного, абразивного и гидроабразивного износа машин и механизмов для добычи полезных ископаемых и обогащения руд, металлургии, энергетики, производства стройматериалов и строительной спецтехники, другого оборудования сходного назначения.

Нержавеющие стали: как состав влияет на свойства

Легированные стали занимают значительную долю рынка металлургической продукции. К ним относятся так называемые «нержавейки» — группа сплавов, отличающихся повышенной устойчивостью к коррозии. Со времени появления номенклатура таких сталей расширилась до нескольких сотен наименований. Поэтому были разработаны система их классификации и маркировка.

Стоит заметить, что название «нержавеющая сталь» не совсем корректно отражает ее свойства. Любой железоуглеродистый сплав подвержен воздействию кислорода и агрессивных веществ, но для того, чтобы это отразилось на эксплуатационных свойствах, нужно разное время. Поэтому нержавеющие стали правильнее называть коррозиестойкими.

Классификация нержавеющих сталей

По составу

В качестве легирующих добавок, повышающих устойчивость железоуглеродистого сплава к образованию ржавчины, используются хром, никель, ванадий, молибден, титан и некоторые другие. Коррозионную стойкость также повышают вводимые для раскисления и нейтрализации серы марганец и кремний. По основным легирующим элементам нержавеющие стали классифицируются как хромистые, марганцовистые и т. д. Некоторые добавки используются для придания сталям особых структурных или технологических свойств, например, для дробления карбидов, повышения ударной вязкости.

Базовыми легирующими элементами нержавеек считаются хром и никель. Они оба входят в твердый раствор с железом, повышают сопротивляемость коррозии. При окислении они образуют на поверхности стального изделия тонкую непроницаемую для кислорода пленку, устойчивую к химическим, электрохимическим и атмосферным воздействиям. Никель расширяет область аустенита в железоуглеродистых сплавах. Хром сужает ее, но является карбидообразующим элементом и связывает углерод. Соотношение никеля и хрома оказывает определяющее влияние на ударную вязкость, свариваемость и способность воспринимать холодную деформацию.

Углерод, как один из обязательных компонентов сталей, отрицательно влияет на сопротивляемость к коррозии. Однако от его содержания зависит твердость и износостойкость стали. Например, 95Х18 имеет менее выраженные коррозионностойкие свойства в сравнении с 40Х13, несмотря на более высокое содержание хрома.

По свойствам

Более наглядное представление о сплавах дает разделение на группы по свойствам:

  • Коррозионностойкие. Стали отличаются высокой сопротивляемостью к атмосферной коррозии, эксплуатируются при нормальных условиях в нагруженном состоянии. Примерами могут служить нержавейки, используемые для изготовления посуды и оборудования для пищевой промышленности: 08Х18Н10, 20Х13, 30Х13.
  • Жаростойкие. Отличительная черта таких сплавов – высокая сопротивляемость к образованию окалины при высоких температурах. Жаростойкие нержавеющие стали применяются для изготовления теплообменников котельных и пиролизных установок (15Х28), клапанов автомобильных и авиационных двигателей (40Х10С2М), деталей для нагревательных металлургических печей (10Х23Н18).
  • Жаропрочные. Разработан ряд сплавов, способных работать под нагрузкой при высоких температурах без существенных деформаций и разрушения. В них используются сложные системы легирования (05Х27Ю5, 15Х12ВН14Ф, 37Х12Н8Г8МФБ). Умеренной жаропрочностью также обладают стали типа 20Х13.

По структуре

По микроструктуре нержавеющие стали делятся на следующие классы:

Кроме них существуют промежуточные группы:

  • аустенито-ферритные;
  • мартенсито-ферритные;
  • мартенсито-карбидные.

Большое влияние на устойчивость к коррозии оказывает термообработка, поскольку влияет на фазовый состав большинства нержавеющих сталей. Устойчивость снижается при возникновении карбидной неоднородности. Этим явлением обусловлена так называемая межкристаллическая коррозия. При нагреве сталей до температур в интервале 500 – 800 °C на границах зерен образуются цепочки карбидов и участки со сниженным содержанием хрома. В теле зерна содержание легирующих элементов остается высоким. Такой вид коррозии часто наблюдается в зонах сварных швов. Для борьбы с этим явлением состав стали стабилизируют введением небольшого количества титана.

Читать еще:  Сверло для точечной сварки своими руками

Физико-химические свойства нержавеющих сталей

Аустенитные стали

При кристаллизации аустенитные стали образуют однофазную систему с кристаллической решеткой гранецентрированного типа. Один из наиболее ярких представителей класса – сплав 08Х18Н10. Благодаря высокому содержанию никеля в нержавейках этого класса (до 30%) аустенитная фаза сохраняет устойчивость вплоть до – 200 °C, содержание углерода не превышает 0,12%. Стали с такой структурой характеризуются отсутствием магнитных свойств. Большинство из них имеет хорошую механическую обрабатываемость.

Аустенитные стали обязательно подвергаются термообработке – закалке, отпуску или отжигу. Скорость охлаждения практически не изменяет твердости, однако оказывает влияние на устойчивость к жидким и газообразным агрессивным средам, стабилизирует размер зерна устойчивость к деформации.

В системы легирования аустенитных хромоникелевых сталей вводят дополнительные элементы:

  • молибдена – для предотвращения питтинга и эксплуатации в восстановительных атмосферах
  • титана и ниобия – для защиты от межкристаллической коррозии.
  • кремния – для повышения кислотостойкости;
  • марганца – для улучшения литейных качеств.

Ферритные стали

В этот класс входят хромистые стали с низким содержанием углерода. Они имеют объемно-центрированную кубическую решетку, определяющую магнитные свойства. Ферритные стали обладают меньшей коррозионную устойчивость в сравнении с аустенитными, не могут быть упрочнены термообработкой, но имеют более высокие технологические свойства. Они легче подвергаются механической обработке и лучше свариваются, а их себестоимость значительно ниже. При температуре 300 – 400 °C стали приобретают высокую пластичность, и из них можно получать объемные штампованные детали сложной формы.

Содержание хрома в таких сталях достигает 27 %. В качестве стабилизирующих добавок используют молибден, титан и алюминий.

Мартенситные стали

Сплавы этого класса содержат не менее 0,15 % углерода и 11 % хрома. Мартенсит имеет микроскопическую игольчатую структуру и при увеличении выглядит так же, как и углеродистая сталь после закалки. Кристаллическая решетка имеет тетрагональную форму и характеризуется высокими внутренними напряжениями. Это определяет высокие прочностные свойства и твердость. Например, для 40Х13 она составляет до 52 – 55 HRC. В качестве дополнительных легирующих элементов вводятся молибден, ниобий, ванадий и вольфрам. Мартенситные стали из-за высокой твердости плохо поддаются резанию и имеют низкую пластичность.

Одно из основных технологических свойств коррозиестойких сталей с такой структурой – способность к самозакаливанию. Мартенситное превращение происходит при охлаждении на воздухе. Для повышения жаропрочности сталь после закалки подвергают отпуску на сорбит или троостит.

Влияние легирующих элементов на жаропрочность аустенитных сталей

В этой статье мы поговорим о влиянии некоторых легирующих элементов на жаропрочность сталей. На складе компании ООО «Новьсталь» к таким сталям относится прокат марки 20х23н18

Влияние титана

В жаропрочных сталях и сплавах с карбидным упрочнением титан, вводимый в небольших количествах (0,1—0,3%), улучшает их длительную прочность . При введении в больших количе­ствах в сложнолегированные жаропрочные стали с углеродом титан понижает твердость и прочностные характеристики и повы­шает пластические свойства при комнатной и высоких темпера­турах. Изменения механических свойств обусловлены тем, что титан связывает углерод в стойкие карбиды, которые в процессах диспер­сионного упрочнения участия не принимают. Поэтому процесс образования карбидов хрома и ванадия в присутствии титана при отношении Ti : С > 5 сильно ослабляется и сталь становится мало склонной к упрочнению за счет дисперсионного твердения . В жаропрочных сплавах с интерметаллидным упрочнением на базе у-твердого раствора титан является легирующим элемен­том, который сильно повышает жаропрочные свойства за счет процессов дисперсионного твердения, связанных с образованием у’-фазы типа Ni3 (TiAl). Переменная по температуре растворимость титана в у-твердых растворах зависит от содержания хрома и других легирующих элементов и определяет кинетику образования у’-фазы при старении предварительно закаленного на твердый раствор сплава.

Влияние хрома

Введение хрома в жаропрочные стали и сплавы повышает их сопротивление окислению при высоких температурах, причем тем больше, чем выше его содержание в сплавах. В отношении повышения жаропрочных свойств хром также оказывает положительное влияние, но он менее эффективен, чем молибден и ванадий. Введение хрома в ферритные стали повышает энергию активации самодиффузии железа и увеличивает температуру рекристаллизации, сопротивление ползучести и длительную прочность. Он также способствует сохранению искажений решетки деформированного аустенита при отпуске. Однако влияние хрома на повышение жаропрочных свойств ферритных сталей зависит от его содержания и легирования другими элементами и не обязательно пропорционально его количеству. У аустенитных сталей хром увеличивает энергию связи атомов кристаллической решетки у-твердого раствора , несколько повышает жаропрочные характеристики и температуру рекристаллизации легированного аустенита. На рис. 1 показано влияние хрома на изменение механиче­ских свойств и длительную прочность сложнолегированной стали с карбидным упрочнением. Максимум жаропрочности в данной системе относится к 9—15% Сг. Хром образует с углеродом ряд карбидов, которые в результате закалки и старения, выделяясь в у-твердом растворе в высокодисперсном состоянии, упрочняют аустенитные стали. Однако вследствие большой склонности карбидов хрома к коагуляции это упрочнение легко снимается с повышением температуры испы­тания. Карбиды хрома обладают сравнительно невысокой термиче­ской стойкостью, а поэтому повышение жаропрочности аустенитных сталей за счет образования только таких карбидов не столь эффективно. В сложнолегированных сплавах на никелевой основе с титаном или алюминием присадка хрома изменяет растворимость ‘у- фазы в твердом растворе и этим сообщает сплавам способность к дисперсионному твердению при более низком содержании титана.

Содержание хрома, % (по массе)

Рис. 1 Влияние хрома на изменение механических свойств стали с 0,6% С; 20% Ni; 6% Мп; 2% V; 1,40%Мо; 1,5% Nb

При чрезмерном увеличении содержания хрома и образовании ферритной составляющей в сложнолегированных жаропрочных аустенитных сталях самого различного состава наблюдается резкое падение жаропрочности.

Влияние молибдена

Введение молибдена в ферритные, аустенитные стали и никелевые сплавы повышает температуру рекристаллизации у-твердых растворов и тормозит их разупрочнение. Энергия активации самодиффузии железа или хрома увеличивается с повышением количества молибдена, добавляемого в сплав. У большинства сплавов легирование молибденом наряду с повышением жаропрочности дает увеличение пластичности при кратковременных и длительных испытаниях. Молибден оказывает значительно большее влияние на жаропрочность дисперсионно твердеющих сплавов с карбидным или и нтер мет а л л ид н ым упрочнен ием. Эффективность влияния молибдена на жаропрочные свойства сложнолегированных сталей и сплавов увеличивается, когда его вводят в сплав одновременно с другими элементами, в том числе элементами, вызывающими процессы дисперсионного твердения. В этом случае молибден тормозит разупрочнение сплава при более высоких температурах, так как затрудняет диффузионный обмен, рекристаллизацию и коагуляцию дисперсных частиц. Поэтому кривая снижения твердости на диаграммах дисперсионного твердения за максимумом у сплавов с молибденом идет более высоко, чем у сплавов без молибдена. Молибден несколько смещает максимум твердости дисперсионного твердения в сторону более высоких температур, мало влияя на абсолютное увеличение твердости, а также на механические свойства при комнатной температуре. В жаропрочных сплавах на никелевой основе и сплавах на железной основе с интерметаллидным упрочнением молибден также оказывает положительное влияние, увеличивая жаропрочность. В ряде сплавов молибден образует фазы типа Лавеса (Fe2Mo), способствуя еще большему повышению жаропрочности за счет процессов дисперсионного упрочнения

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]