Содержание

Пассивация нержавеющей стали

Пассивация нержавеющей стали для борьбы со ржавчиной

Легирование сплава железа с углеродом хромом, открытое английским ученым, привело к созданию нержавеющей стали. Такое название говорит о сопротивлении сплава воздействию ржавчины. Не все знают о том, что 11-15% хрома способны защитить поверхность от коррозии только в случае контакта с окружающей средой с нормальными условиями. Контакт с соленой морской водой кислотными или щелочными средами не оставят живого места на такой нержавеющей стали. Небольшие царапины, сколы, легкие деформации могут стать очагами и испортить всю поверхность. Более страшным для технических и физических свойств стали носит точечная коррозия, при которой теряется однородность свойств.

Ржавчина — причины и следствие

Для разработки борьбы со злейшим врагом железоуглеродистых сплавов надо выяснить, почему ржавеет нержавеющая сталь. Основные виды такого явления:

  • однородная коррозия, распространяющаяся по поверхности
  • межкристаллитная коррозия
  • гальваническая коррозия (самая распространенная)
  • коррозия в трещинах
  • коррозия, вызванная воздействием микроорганизмов

Возникновение коррозии наиболее часто происходит в среде воды. Техническая чистота воды не влияет на скорость распространения ржавчины. Процессы протекания коррозии нержавеющих сталей исследователи разделяют на следующие типы:

  1. Контаминация железом – обусловлена контактом нержавеющей стали и обычной углеродистой стали. Каждому попадались на глаза ржавые подтеки на нержавеющей стали под болтовым или заклепочным соединением. Самым простым методом борьбы с такими дефектами является нанесение защитных лакокрасочных покрытий, оцинковка, химическая обработка крепежного элемента из углеродистой стали. Также можно дополнительно провести пассивацию нержавеющей стали для исключения появления точечных очагов.
  2. Класс I – ржавчина , появляющаяся от внешних источников, характеризуется наличием оксидов железа и гидроксидов. Цвет ржавчины может менять оттенок от ярко-оранжевого до красного в зависимости от источника ржавчины и условий формирования ржавчины.
  3. Класс II – обусловлен наличием хлоридов и (или) элементов галогенидов , при отсутствии на механически полированных, но не пассивированных поверхностях нержавеющей стали. Данный тип ржавчины удаляется механической обработкой и обработкой лимонной кислотой, создающей пассивирующую пленку. Надежность такой пленки ограничена нормальными условиями эксплуатации. При появлении в среде хлоридов, очаги поражения возникают вновь.
  4. Ржавчина III класса возникает в среде острого пара, даже в системах отопления со сверхчистым паром. Имеет цветовую окраску от синего до черного. Примечателен тот факт, что на электрополированой нержавеющей стали ржавчина будет иметь глянцевый блеск, а на механически обработанных поверхностях цвет будет носить матовый характер. Матовую ржавчину тяжело убрать обычным способом, но химическая очистка в соединении с полировкой смогут исправить такой дефект. Блестящую коррозионную пленку, учитывая ее стабильность, можно не убирать.

Технологически коррозии можно противостоять при помощи дополнительного легирования широким спектром элементов, препятствующих этому явлению. В случае невозможности или нецелесообразности применения дорогостоящих сталей можно использовать обработку поверхности. Рассмотрим пассивацию нержавеющей стали как один из самых распространенных методов повышения коррозионной устойчивости металла.

Процесс пассивации нержавеющей стали

Для людей, имеющих глубокие познания химии со школьных лет, остается загадкой вопрос перевозки целой группы кислоты в железнодорожных емкостях изготовленных из стали, а не из платинового или золотого листа, не реагирующего на кислоты. Ведь учитель химии рассказывал о взаимодействии раствора кислот и железа. Все дело в том, что в 1836 году ученый с Туманного Альбиона М.Фарадей предположил о возможности возникновения спецефической пленки на поверхности сталей при их взаимодействии с кислотами, имеющими предельно высокую концентрацию. Появление пленки на поверхности нержавеющей стали при взаимодействии с концентрированными кислотами называется пассивацией.

Основной теорией принято считать возникновение сплошной пленки оксидного, хлоридного, сульфатного или фосфатного характера. Толщина ее редко превышает несколько десятков нанометров. Другая теория пассивации объясняет процесс построением плены за счет адсорбированного окислителя. Адсорбция приводит к насыщению валентности атомов металла. Химическая активность соответственно снижается. Широкое распространение одной теории не отменяет, а лишь подтверждает и дополняет вторую и создает полное понимание процессов пассивации в различных средах и условиях.

Интересный факт. Хранение опасных бритв в насыщенных растворах солей, которые представляют собой производные хромовой кислоты, позволяет сберечь ее остроту более длительное время. Это является примером пассивации. Без такой «консервации» острие бритвы покроется коррозией, которая под микроскопом будет выглядеть рыхлыми бесформенными хлопьями.

Использование металла в качестве анода при электрохимической пассивации, позволяет добиться пассивного состояния поверхности нержавеющей стали. Пассивация, помимо изменения технологических параметров, может придавать обрабатываемой поверхности дополнительные эстетические свойства. Современные технологии позволяют производить окраску и тонировку металлических поверхностей. Варьируя концентрацию, температуру и время взаимодействия можно добиться различных показателей толщины пленки и ее шероховатости. Матового блеска можно добиться, если толщина пенки будет на одном уровне с длиной волны видимого света. Электрохимическое оксидирование и нанесение пассивирующей пленки на поверхность называют анодированием и часто применяют для покрытия бижутерийных изделий из нержавеющей стали. В отличие от химического, электрохимический способ пассивирования обладает более широкой цветовой палитрой и оттенками.

Процесс воронения нержавеющей стали

Процессы воронения и синения нержавеющих сталей разрабатывались оружейниками не одно десятилетие, и нашли широкое использование в промышленности. Эти процессы по существу являются оксидированием при температурах до 410 градусов Цельсия. Самый распространенный способ заключается в нанесении специального лака (20% раствор асфальтового лака), просушивание при нормальных условиях. Пассивацию поверхности нержавеющей стали производят также в щелочных ваннах. Пассивация в промышленных масштабах призвана защитить от ржавчины элементы узлов и агрегатов, работающих в тяжелых условиях, декорирование изделий, обеспечение электроизоляционных свойств поверхности.

Когда пассивация неуместна

В случае если изделие из нержавеющей стали не будет использоваться в среде агрессивных сред, то использование кислот и электрического тока сохраняет риск по ухудшению качества поверхности металла, без видимой на то причины. Взвешивайте тщательно экономическую целесообразность процедуры пассивации и реальными целями, которых необходимо достичь.

Производить химическую пассивацию нержавеющей стали можно лишь в случае полной уверенности контроля над протеканием процесса. В случае со сваренной трубой пассивация лишь верхнего слоя шва не гарантирует достаточность защиты с внутренней стороны шва. При этом воздействие кислот ускорит и усугубит процесс образования ржавчины.

Химическая пассивация как оптимальное покрытие жаропрочной стали

Пассивация металла — процесс, в результате которого на поверхности металла образуется оксидная плёнка, препятствующая образованию коррозии. Название метода покрытия происходит от слова «пассивность». Цель пассивации — снизить химическую активность металла при взаимодействии с другими металлами или агрессивными условиями окружающей среды.

В своём роде, появление плёнки — то же разрушение металла. Но, разрушая верхний слой материала на несколько десятков нанометров, пассивация спасает нижние слои от появления ржавчины.

Таким образом, химическая пассивация — взаимодействие окислителя с обрабатываемой поверхностью.

Этапы химической пассивации

1. Если предварительно не подготовить металлическое изделие, то окислитель вступит в реакцию не со сплавом, а с посторонними элементами. Поэтому, перед пассивацией необходимо зачистить поверхность. Очистку выполняют 2 способами: мытьём или ошкуриванием изделия при помощи наждачной бумаги. Теперь можно приступить к пассивации.

2. Сам процесс представляет нанесение на изделие химического реагента. На сплаве образуется защитная плёнка, состоящая в основном из солей и окислов. Плёнка делает структуру изделия наиболее крепкой и долговечной. Эффективность процедуры зависит от следующих факторов:

  • состав раствора;
  • состав сплава;
  • состояние поверхности обрабатываемой детали.
Читать еще:  Искусственное старение меди

Лучше всего поддаются химической пассивации высоколегированные стали, особенно хромникелевые. А вот углеродистые стали следует обрабатывать только для кратковременной защиты, так как уровень защитного слоя на них существенно слабее.

3. Очистка при помощи воды. Соли, которые могли остаться на изделии, могут вызвать коррозию. Поэтому промывку следует проводить тщательно.

4. Остатки кислоты необходимо нейтрализовать с помощью 2-3 % раствора аммиака или раствора, состоящего из 25-30 г/л олеиновой кислоты и 2-4 г/л гидроксида натрия. Обработка проводится при 80 — 90 °С на протяжении 2-3 минут.

Какой раствор используется?

Использование различных растворов зависит от свойств сплава. Рассмотрим, какие растворы применяются для пассивирования различного класса черных металлов:

Высоколегированные сплавы, устойчивые к коррозии — азотная и серная кислоты.

  • Сплавы ферритного класса — калий двухромовокислый, азотная кислота.
  • Углеродистые стали — калий двухромовокислый, хромовый ангидрид, фосфорная кислота, гидроксид натрия.
  • Среднелегированные стали — хромовый ангидрид, фосфорная кислота.

Температура и время пассивирования также зависят от класса сплава. Температура составляет диапазон от 18 до 90 °С, а время — от 3 до 60 минут.

Чем выше температура раствора, тем быстрее протекает процесс.

Применение пассивации

  • Пассивация используется для металлических деталей под покраску. Она не только защищает от коррозии, но и обезжиривает изделия. Применяется в сфере машиностроения.
  • Пассивация паровых турбин. Но зачем нужна пассивация нержавеющей стали, ведь она и так не поржавеет? Оказывается, если сплав находится в непрекращающемся контакте с агрессивной средой, то он может разрушиться. В качестве примера выступает сварной шов. Иногда на нём присутствуют частички железа. И тогда подвергается коррозии даже нержавейка.
  • Стоматологическая область. Обрабатываются нижняя часть имплантов — винты, которые вмонтируются в челюсть. Пассивация используется для исключения разрушения импланта в челюстной кости.
  • Химическая пассивация часто проводится с декоративной целью. При кратковременной обработке на поверхности появляется радужная плёнка. Яркие предметы использования — краны, дверные ручки.
  • Пассивация украшений из бижутерии используется во избежание аллергических реакций.

Химическая пассивация заметно продлевает срок службы изделий из металла и заслуживает широкого применения в самых разнообразных областях.

Технология пассивации металла, виды и составы

Пассивация — это защита металла стойкими к коррозии тонкими поверхностными пленками. Свойства и применение пассивированных металлов и сплавов. Виды пассивирования и состав электролитов. Особенности и поэтапное описание технологии.

Пассивация — это формирование на поверхности металла тонких оксидных или солевых пленок, которые защищают его от внешней коррозии. Такое покрытие препятствует контакту металла с кислородом и агрессивными средами. При пассивировании защитные пленки могут образовываться на металлической поверхности как естественным, так и искусственным путем. В первом случае они состоят из оксидов химических элементов, входящих в состав самого металла, а во втором могут включать в себя оксиды и соли других химических элементов. Например, чистый алюминий естественным способом образует очень стойкую оксидную пленку, поэтому устойчив к большинству видов коррозии. А вот изделия из его сплавов, содержащих химически активные компоненты, уже нуждаются в искусственной коррозионной защите и поэтому подвергаются пассивированию в солевых растворах.

Пассивацию широко применяют для защиты поверхностей изделий из стали, меди, никеля, алюминия и их сплавов. Даже защитные цинковые и кадмиевые покрытия пассивируют солями хрома для повышения их коррозионной и механической стойкости. Пассивирование металла вызывает образование на его поверхности слоя оксидов или солей толщиной в несколько микрон, что практически не влияет на геометрические размеры изделий. С другой стороны, такие пленки могут снижать контактную проводимость основного материала, но, как правило, в меньшей степени, чем слой корродированного металла.

Суть и описание процесса пассивации металла

При пассивировании поверхности металлических изделий обрабатывают растворами химических соединений, обладающих окислительными свойствами. В этой роли чаще всего выступают кислоты, нитриты и растворы солей хрома (реже — молибдена). Нанесение раствора на поверхность металлических заготовок производится методом погружения или вручную, с помощью специального оборудования. Применяемые при пассивировании растворы обычно состоят из основного реагента и нескольких добавок, ускоряющих и стабилизирующих процесс пассивации.

В общем виде процесс пассивирования состоит из следующих этапов:

  1. Механическая очистка поверхностей изделия.
  2. Химическое обезжиривание в растворе едкого натра и кальцинированной соды.
  3. Промывка в проточной горячей, а затем холодной воде.
  4. Пассивирование в течение заданного времени.
  5. Нейтрализация в растворе кальцинированной соды.
  6. Промывка путем многократного погружения в проточную холодную воду.
  7. Сушка в сушильном шкафу или обдувом теплого воздуха.
  8. Контроль качества поверхности после пассивирования производится визуальным или инструментальным способом. При неудовлетворительном результате процесс пассивирования повторяется, начиная с п. 1.

Свойства пассивированного металла и его применение

Пассивация железа и его сплавов в виде конструкционных и специальных сталей обычно проводится по покрытию из никеля, цинка или кадмия с использованием солей хрома. Такое пассивирование укрепляет поверхностный слой и позволяет эксплуатировать стальные изделия в течение длительного периода без опасности коррозии, а в случае ее проявления обрабатывать только пораженные участки. Пассивирование меди и ее сплавов (бронзы и латуни) выполняется как в защитных, так и в декоративных целях с применением хроматных растворов. В этом случае на поверхности медного изделия образуется тонкая прозрачная пленка, предохраняющая металл от окисления и сохраняющая его товарный вид.

Пассивирование серебра проводят для этих же целей с применением аналогичных технологий.

Виды пассивирования

Химическое

Химическое пассивирование происходит в результате притяжения отрицательных ионов растворенных в воде солей к поверхности металла, атомы которого имеют положительный потенциал. Для этого металлические изделия, предварительно очищенные и обезжиренные, помещаются в специальную ванну, заполненную соответствующим раствором. Основным компонентом в таком электролите является соль металла, образующего защитную пленку на поверхности изделия. Химическая пассивация также может выполняться по месту установки изделия. В этом случае все процессы, начиная от очистки и заканчивая пассивацией, нейтрализацией и обмывкой, выполняются вручную с помощью специального оборудования.

Электрохимическое

Содержание составов для пассивации

Все соли хрома (особенно шестивалентного) очень токсичны. Поэтому проводить хромовую пассивацию металлических изделий можно только на специализированных производствах, имеющих соответствующие системы очистки и водоотведения, а также специально обученный персонал.

Нигде не пишут, каким образом выполняется пассивирование солями хрома непосредственно в местах установки оборудования. Как в этих случаях удаляют химические реагенты? Или при такой обработке применяют другие составы? Если кто-нибудь располагает информацией по данному вопросу, поделитесь, пожалуйста, в комментариях к нашей статье.

Пассивация и уход за нержавеющей сталью пивоваренного оборудования

Несмотря на свою идеальную репутацию металла для производства пива, нержавеющая сталь может вызвать коррозию или ржавчину. Поэтому на этой неделе мы взглянем на то, как и почему нержавеющая сталь может корродировать, а также, как вы сможете пассивировать свою нержавеющую сталь пивоваренного оборудования для ее защиты.

Нержавеющая сталь и ржавчина

Сталь изготавливается ​​из сплава железа и углерода, а углерод составляет всего лишь пол или чуть более процента в ее составе. Для сравнения, нержавеющая сталь производится из железа и хрома. Хрома же содержится примерно 10-30% в составе стали, и он является важным элементом, который делает нержавеющую сталь устойчивой к коррозии.

Хром в нержавеющей стали очень быстро реагирует с кислородом, и фактически образует защитный слой оксида хрома на поверхности стали. Этот оксид хрома предотвращает образование ржавчины и коррозии. Однако, если слой хрома по какой-либо причине нарушится, то железо в сталь могут фактически начать корродировать и ржаветь.

Читать еще:  Роликовые вращатели для сварки

Ваше нержавеющее пивоваренное оборудование в основном очень устойчиво к коррозии. Тем не менее, если вы воздействуете на него хлорной известью или другими отбеливающими чистящими средствами, поцарапаете его, чрезмерно почистите, или воздействуете обычными ржавеющими стальными губками или оставите в контакте с обычной сталью, то это может повредить защитный слой. Отбеливающими средствами можно удалить защитный слой полностью. Чрезмерная чистка, особенно со стальными губками также может подрывать ваш окислительный слой. Важно хранить обыкновенную сталь там же, где и обычные ведра, инструменты и некоторые виды оборудования отличающие от вашего оборудования из нержавеющей стали. Железо из обычной стали стремиться повредить нержавеющую сталь (свойство железа) и разрушить окислительный слой. Не складывайте обычные стальные ведра, смешанные металлические инструменты или оборудование в ваш нержавеющей котел после варки.

Пассивация нержавеющей стали с целью ее защиты

Во время изготовления продукции из нержавеющей стали, как правило, ее погружают в ванну с азотной кислотой в конце производственного процесса для удаления загрязняющих веществ. Кислота также активирует процесс окисления хрома в воздухе, который называется пассивации, где во время взаимодействия кислорода с хромом образуется защитный слой оксида хрома. Пассивация происходит очень быстро — как правило, в течение 20 минут.

Сейчас некоторое нержавеющее пивоваренное оборудование, в частности, из нержавеющих материалов с более низкой стоимостью, скорее всего, было обработано, проштамповано, протравлено, отполировано и заварено лишь после того, как нержавеющая сталь была изготовлена ​​и промыта кислотой. В результате оно может иметь масла, полировальные составы, сварочные соединения и другие загрязняющие вещества, которые защищают сталь, но должны быть смыты с первого раза, когда вы очищаете ваши детали. К тому же, вы, вероятно, не захотите обнаружить эти масла и соединения в своем пиве.

Шаг 1: Тщательная очистка

Так как вы, скорее всего, не имеете доступа к большой ванне с азотной кислотой, пассивация в домашних условиях начинается с очень тщательной очистки. Если это новое оборудование, в котором вы хотите удалить любые вещества, оставшиеся при производстве и окончательной обработки. Это потребует сильного чистящего средства, например, такое как трифосфат натрия (TSP). Смешайте TSP в рекомендуемой пропорции с горячей водой. Bar Keeper’s Friend также хорошее чистящее средство для нержавеющего оборудования (Примечание: это импортный аналог похожий на порошок Пемолюкс, но более эффективный), хотя вы не должны использовать его на протравленных металлах. Также продается «мягкий скраб» — жидкую версию Bar Keeper’s Friend, который более прост в использовании. Убедитесь, что вы удалили все фитинги, клапаны и другие мелкие элементы и очистили их тоже. Тщательно промойте и высушите все после очистки.

Шаг 2: Пассивация кислотой

Теперь, когда вся грязь, масла и примеси удалены, можно приступить к следующему шагу пассивации металла. Это достигается путем применения слабой кислоты с последующей сушкой металла на воздухе. Кислород содержащийся в воздухе будет взаимодействовать с хромом, формируя пассивный защитный слой. Всегда надевайте перчатки при работе с этими кислотами, поскольку они могут вызвать раздражение кожи при высоких концентрациях.

Есть несколько вариантов, которые можно использовать здесь. Одним из вариантов является использование средства «Bar Keeper’s Friend», которое содержит щавелевую кислоту. Оно хорошо работает на нержавеющей стали, но не используйте его, если у вас на поверхности оборудования применялось электронное травление, так как оно будет разрушать или даже удалять травление. Добавьте достаточно воды, чтобы сформировать густую пасту и нанесите средство на объект, который требует пассивации. Пусть оно «посидит» на металле в течение 5-10 минут, а затем аккуратно протрите его сухим полотенцем. В качестве альтернативы вы можете промыть все чистой водой, но вы должны немедленно высушить полотенцем так, чтобы металл быстро подвергся воздействию воздухом, а не водой.

Другим агентом является высокая концентрация дезинфицирующего средства Star Sun, которое широко применяется в домашнем пивоварение и в основном является кислотой. Его обычно используют около 30 грамм на 20 литров для дезинфекции, а для пассивации вам потребуется 30 гамм на 4 литра. Замочите детали в концентрированном растворе Star Sun в течение 20-30 минут при комнатной температуре, а затем дайте им высохнуть им на воздухе в течение ночи, чтобы кислород смог пассивировать металл. На следующий день, возьмите каждую деталь и тщательно промойте, так как она все равно будет немного содержать кислотного остатка перед варкой пива.

Последним способом является лимонная кислота, которая широко доступна в форме порошка. Пассивация может быть достигнута при 4-10% — ной концентрации лимонной кислоты в теплой воде в течение 30 минут. Опять же вам потребуется просушка, чтобы кислород из воздуха сделал свое дело за ночь, прежде чем смыть любые остаточные кислоты.

Когда нужно пассивировать

Для нового оборудования многое зависит от его происхождения. Высококачественное оборудование часто погружается в азотную кислоту, как один из последних этапов в производстве, и, возможно, потребуется только хорошая чистка для удаления масляных остатков перед первым использованием. Производители менее дорогого оборудования после обкатки, сварки, полировки могут пропустить окончательного погружения с целью экономия денег.

Даже если вы знаете кто источник вашего нового оборудования, я бы склонялся к обоим шагам тщательной очистки и пассивации. Тщательная очистка требуется, чтобы удалить масла, полировочные составы и другие загрязняющие вещества, которые могли бы испортить ваше пиво. Но дополнительный шаг пассивации после очистки — это не высокая цена, по сравнению с достаточно дорогим оборудованием из нержавеющей стали, которое может прослужить для вас всю жизнь.

Также вы должны рассмотреть пассивацию вашей нержавейки в любой момент, если считаете, что повредили защитный слой хрома. Это включает в себя устойчивые пятна, которые требуют чрезмерной очистки, любые царапины, вмятины на нержавеющей стали, воздействия от обычной стали, стальных или железные губки, или воздействия отбеливающих чистящих средств. Кроме того, если вы часто используете его для варки, будет не плохой идеей для пассивации каждый год или через два только в качестве профилактической меры.

И, наконец, если вы заполучили ржавчину или коррозию, важно исправить это немедленно. Мягкий абразив, такой как Bar Keeper’s Friend, поможет вам удалить ржавчину, а также будет пассивировать область, чтобы предотвратить от дальнейшее повреждения.

Электролитическое и химическое пассивирование металлов

Пассивирование, (или пассивация) металлов является особой обработкой, в ходе которой внешний слой материала приобретает новые свойства, делающие металлы похожим на благородные – то есть не поддающимися окислению и каким-либо другим негативно влияющим на него действиям.

В ходе обработки получаются оксидные плёнки на поверхности. И если эта плёнка не будет как-то нарушена грубым физическим воздействием, то любой метал, ранее требовавших особых условий эксплуатации, делается перед ними защищённым и стойким.

Суть и описание процесса

Для защиты от коррозии или других видов химических разрушений на поверхности металла формируют фазовый или адсорбционный слой (плёнку). Технически это выглядит как нанесение такого защитного покрытия с помощью специальных растворов (химическое пассивирование) или к созданию защитного барьера прибегают другими способами (электролитическая пассивация).

Электролитическая является более предпочтительной как химически более стойкая.

Целью процесса является снижение химической активности металлов с возможностью их сохранения. Ведь убытки от коррозии как от атмосферных воздействий, так и от реагентов в технологических процессах во всём мире может достигать величин десятков миллиардов долларов. И для защиты этих металлов практически к каждому из них придуман свой механизм нанесения защитных слоёв (потому что универсальных методов не существует, каждый металл требует своего подхода). На практике это вылилось в разработку особых режимов воздействия, уникальных составов электролитов и расчёта напряжения и силы тока для каждого конкретного случая нанесения плёнок на металл.

Читать еще:  Трубы стальные тонкостенные сортамент

Пассивирование металла можно рассматривать как образование своего рода ржавчины на его поверхности. Только «ржавчина» эта рукотворная и с заранее заданными свойствами.

Химическая пассивация

Это обработка металлов растворами соединений, которые способны быстро образовать оксидную поверхность. Но чтобы процесс не пошёл вглубь, особенно активно разрушая слабые места в кристаллических решётках металлов. На определённой стадии его останавливают, применяя вещества-нейтрализаторы, а затем подвергая металл промывке в разных средах и при разной температуре.

Типичная картина может выглядеть так:

  • зачистка поверхности металла, предназначенного для пассивации, абразивными материалами;
  • обезжиривание поверхности едким натром или кальцинированной содой;
  • удаление обезжиривающий веществ вместе с растворёнными ими соединениями напором горячей, а затем холодной воды;
  • пассивирование подходящим к данному металлу составом в заранее рассчитанном времени»
  • нейтрализация химического реагента-пассиватора кальцинированной содой;
  • промывка в проточной холодной воде»
  • сушка обдувом тёплого или горячего воздуха;
  • визуальный и инструментальный контроль поверхности, в т. ч. и с помощью оптических датчиков, настроенных на типичную структуру получившейся оксидной плёнки.

При неудовлетворительном качестве полученных результатов процесс повторяют, начиная с абразивной зачистки.

Электролитическая пассивация

Основана на свойстве металлов переходить через электролит с приложенным напряжением на поверхность обрабатываемого металла. Для каждого конкретного вида металла подбирается присущий только ему электролит. А в качестве анода также используется металл, подходящий по своим физико-химическим показателям.

При анодной пассивации поляризующий ток должен превысить некоторую критическую величину, при которой природа металл, электролита, его температура и концентрация начинают работать на покрытие погружённого в ванну металла защитной плёнкой. Которая не даёт возникнуть обратному «ионному току». Этот момент и является началом образования «непробиваемого» оксидного слоя, перед которым оказываются бессильными вещества-окислители. Кроме самых агрессивных, для которых будут предусмотрены особые режимы пассивации и особые вещества для неё.

Пассивирование стали

Входящее в состав любых видов сталей железо, как её основа, подвержена коррозии больше, чем какой-бы то ни было металл. Лучшей защитой от коррозии для железосодержащих материалов является добавление легирующих добавок в железный расплав, которые делают сталь нержавеющей. Но нержавеющая сталь дорога. Поэтому защитить более простые марки стали от ржавчины можно обработкой их в электролитических ваннах с добавлением в электролит ингибиторных пигментов в виде суриков – железных или свинцовых.

При анодном же покрытии с помощью пигментов в пограничном обрабатываемом внешнем слое возникает высокая плотность тока в порах образуемой защитной плёнки. В железе как части стального сплава защитные оксидные плёнки в естественных условиях образоваться не могут, то пассивирование возможно только в случае включения в механизм покрытия пигментов-ингибиторов.

Но основное различие в образовании защитных слоёв на металле методами химической и электролитической пассивации заключается в скорости процесса и прочности образуемой фазовой плёнки. Ведь и в химической ванне, и в ней же, но с добавленным к процессу электрическим током и напряжением процесс образования оксидной или солевой плёнки идёт по одному сценарию.

Пассивация конструкционных и специальных сталей

Для надёжной пассивации сталей их желательно предварительно покрыть, все или частично (те их элементы, которые будут испытывать наибольшее воздействие неблагоприятных факторов) никелем, цинком или кадмием с использованием хромовых солей. Пассивирование этими солями выгодно тем, что после укрепления поверхностного слоя изделия эксплуатируются без опасности возникновения коррозий очень длительное время. А в случае начала ржавления отдельных участков их можно, не разбирая и не снимая с места конструкцию, пассивировать этим же составом с солями хрома прямо на месте, методом аппликации пропитанных растворами накладок.

Пассивация алюминия

На алюминии оксидная и очень прочная плёнка образуется в естественных условиях под воздействием кислорода воздуха. Многие помнят школьный опыт, когда с алюминиевой проволоки, опущенной в ртуть, надфилем снимается небольшой слой , а потом этот обработанный надфилем кончик вынимался из ртути. И обработанный конец на воздухе мгновенно покрывался «шубой» из кристаллов окисла. Но в обычных условиях атмосферного воздействия оксида на алюминии образуются не столь быстро и имеют вид прозрачной плёнки толщиной всего несколько мМк. По своим свойствам она очень близка к химически-инертному оксиду алюминия корунду. Недостаток такой природной плёнки – её неустойчивость при значительном повышении температуры или при длительном воздействии активных кислот.

Для стойкой защиты не обойтись без процесса анодирования, результатом которого бывает получение защитных плёнок толщиной от 5 до 20 мМк. А в отдельных режимах можно получить и сверхпрочные плёнки,(выдерживающие нагрузку до 1500 кг на мм, то есть выше, чем у инструментальной стали.

Пассивация серебра

Серебро относится к благородным металлам, несмотря на изменение его свойств на свету (оно темнеет). До наступления эры цифровой фотографии эта способность серебра использовалась в создании светочувствительных материалов (фотоплёнки и фотобумаги).

Но потемнение изделий из серебра в быту – процесс часто нежелательный, и для его предотвращения используют химические способы предохранения верхнего, пограничного с воздухом, слоя металла, от воздействия света и воздуха. Лучше же всего предотвращает такие изменения пассивация методом обработки серебра в хромпике – двухромовокислый калий K2 Cr2 O7.

Для его осуществления хромпик в количестве 60 г разводят в 1 литре кипячёной нежёсткой воды. Рабочая температура раствора от 25 до 40 градусов, это не критично. Пассивацию проводят, просто погрузив серебряное изделие в ванну полностью на 20 минут и периодически перемешивать раствор. В случаях, когда разведённое количество хромпика не покрывает изделие полностью (статуэтка сложной формы или объёмный серебряный канделябр) попеременное обрабатывание поверхности частями лучше не практиковать, а развести реактив в необходимом для нормального объёма количестве воды.

Химическое пассивирование нержавейки

Несмотря на то, что нержавеющая сталь как в своей массе, так и в поверхностном слое уже инактивирована в смысле воздействия на неё неблагоприятных условий среды, иногда коррозия находит у этой стали слабые места.

Сталью железо делают легирующие добавки. А основной такой добавкой, делающей сталь нержавеющей, является хром. Но при его 12% в составе сплава он защитит сталь только от атмосферных воздействий. При 17% выдержит уже обработку азотной кислотой, одной из самых агрессивных кислот.

Дело ещё и в состоянии поверхности нержавеющего материала. И если поверхностный слой нарушен, если на нём есть глубокие царапины, задиры, микроскопические ударные кратеры, то даже легированный металл будет подвержен коррозии.

А иногда достаточно сварного шва на поверхности. И пусть сварка тоже выполняется специальными электродами и в специальном режиме, образующееся в шве чистое железо станет центром коррозии, которая примет цепной характер. Да что сварка? Даже если резать или пилить рядом с нержавеющей конструкцией обычную, нелегированную сталь, то опилки, стружки и любой формы частички от неё, попавшие на нержавейку, тоже быстро станут такими центрами.

Заключение

А в итоге, когда начинаешь разбирать причины появления ржавчины на нержавеющей стали, выясняется, что виной было уничтожение естественной для этого вида стали оксидной плёнки. Поэтому дополнительной защитой, которая нужная нержавейке – это обработка кислотами: серной, соляной, азотной с последующей нейтрализацией её остатков после того, как она уже образовала химически-нейтральный защитный слой на металле. И смыть остатки нейтрализатора водой, а потом вытереть насухо. Теперь только очередное грубое механическое нарушение оксидной плёнки способно запустить механизм коррозии.

По этой же причине домохозяйкам ни в ком случае не стоит чистить посуду из полированной нержавейки абразивными составами, да ещё с примесью хлора. Пример? «Комет». Очистит эффективно, это да. Но параллельно запустит процесс коррозии металла.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]