Содержание
- Преобразователь для сварки — основы использования
- Содержание:
- Понятие сварочного преобразователя.
- Стационарные и передвижные преобразователи.
- Правила безопасности при работе с преобразователями.
- Устройство и назначение сварочного преобразователя.
- Практическая работа №10 по МДК.01.01. Изучение устройства сварочных преобразователей. Технические характеристики преобразователей (работа с каталогами)
- Устройство сварочного инвертора
- Принцип работы сварочного инвертора
- Сварочный преобразователь его строение и назначение
- § 98. Сварочные преобразователи постоянного тока и сварочные агрегаты
Сварочный преобразователь его строение и назначение
Преобразователь для сварки — основы использования
Содержание:
В зависимости от технологического процесса, а именно марки свариваемого металла и типа покрытия электрода для сварки, работы выполняются или при переменном, или при постоянном токе. Постоянный ток от переменного выгодно отличается тем, что дуга горит намного стабильней. Это означает, что процесс сварки вести легче, причём можно проводить процесс сварки даже на маленьких токах. Для стабилизации тока используется преобразователь для сварки, трансформатор.
Размещение источников для проведения сварочных работ может быть индивидуальным или централизованным. При групповом размещении оборудование размещают на расстоянии около 30 — 40 метров от поста, а сами источники питания ставят на минимальном расстоянии от сварщика.
Понятие сварочного преобразователя.
Преобразователь для сварки является комбинацией электродвигателя с переменным током и специального сварочного агрегата с постоянным током. В преобразователе электрическая энергия из сети переменного тока переходит в механическую энергию электродвигателя устройства, вал генератора вращается, в результате чего образуется постоянный электрический ток. КПД преобразователя не очень велик, а также в них есть вращающиеся части, в результате чего они менее надежны в своем использовании и не так удобны.
Однако, отметим, что при строительно-монтажных работах использование преобразователей более приоритетно, так как они менее чувствительны к колебаниям напряжения в сети. Для питания сварочной дуги постоянным током используется как передвижные, так и стационарные преобразователи.
Сварочный преобразователь имеет в себе две части — приводной электродвигатель и сварочный генератор, что объединены под одним корпусом.
Якорь преобразователя и его ротор располагаются на общем валу, подшипники которого закрепляются на корпусе крышки преобразователя. Также, на валу между электродвигателем и генератором располагается вентилятор, что охлаждает всю систему и защищает ее от перегрева. Работа преобразователя основана на электромагнитной индукции.
Стационарные и передвижные преобразователи.
Итак, сварочные преобразователи могут быть стационарными или передвижными. Посты для сварки изделий стационарного вида располагают в небольших сварочных кабинах. Как правило, стационарные посты располагают для сварки небольших изделий.
Передвижные посты применяют для сварки достаточно больших конструкций: водо- и нефтепроводов, металлоконструкций и т.д. При этом для защиты рабочих от негативного воздействия ультрафиолетовых лучей, распространяющихся от сварочной дуги, устанавливают щиты высотой около полутора метров, их выполняют из несгораемых материалов.
Сварочные преобразователи рационально использовать при больших объемах сварочных работ.
Сварочный преобразователь создает постоянный ток для сварки, а сама величина постоянного тока регулируется при помощи балластных реостатов. Передвижные сварочные посты используются обычно при монтаже и проведении ремонтных работ. При этом сварочный преобразователь устанавливается в прицепы или закрытые автомобили, они снабжены рубильниками, которые потом подключаются к оборудованию.
Правила безопасности при работе с преобразователями.
При эксплуатации преобразователя нужно знать следующие правила работы с этими устройствами:
- На клеммах устройства напряжение составляет 380/220 вольт, поэтому ни при каких условиях клеммы не должны быть закрыты. Заметим, что все подключения со стороны высокого напряжения в преобразователе должны осуществляться электриком, имеющим право на проведение этого типа работ.
- Корпус преобразователя всегда должен быть надежно заземлен.
- Напряжение на клеммах генератора в 40 В на холостом ходу может повысится до 85 В. При наличии токопроводящего пола, работе при высокой температуре воздуха, высокой степени влажности, пыли, напряжение выше 12 В может быть опасно для жизни работников.
- При повышенной влажности помещения, наличия токопроводящего тока и других факторов, повышающих вероятность поражения током, необходимо использовать резиновые перчатки, ботинки с резиновой подошвой.
- Лицо и глаза рабочих должны быть всегда защищены с помощи шлемов и щитков.
Делая заключение, можно сказать, что преобразователь используется для превращения переменного тока в постоянный посредством перехода энергии из одного состояния в другое. Нужно учитывать опасность преобразователей и принимать необходимые меры по защите рабочих от опасности поражения рабочих электрическим током.
Устройство и назначение сварочного преобразователя.
Сварочный преобразователь (рис. 43) представляет собой машину, служащую для преобразования переменного тока в постоянный сварочный ток.
Он состоит из сварочного генератора постоянного тока и приводного трехфазного асинхронного электродвигателя 8, сидящих на одном валу и смонтированных в общем корпусе. Сварочный генератор состоит из корпуса 11 с укрепленными на нем магнитными полюсами 10 и приводимого во вращение якоря 12.
Рис. 43. Сварочный преобразователь
Тело якоря набрано из отдельных лакированных пластин электротехнической стали. В продольных пазах его уложены витки обмотки. Рядом с якорем находится коллектор, состоящий из большого числа изолированных друг от друга медных пластинок 1, к которым припаяны начала и концы каждой группы витков якоря.
Магнитное поле внутри генератора создается магнитными полюсами обмоток возбуждения, которые питаются постоянным током от щеток 2 самого генератора. В распределительном устройстве 4 размещены пакетный выключатель, регулировочный реостат 3, вольтметр 6, доски зажимов 5 высокого и низкого напряжения и другая аппаратура. При включении электродвигателя якорь начинает вращаться в магнитном поле и в витках его возникает переменный ток, который с помощью коллектора преобразуется в постоянный.
К коллектору прижимаются угольные щетки 2, с помощью которых постоянный ток снимается с коллектора и подводится к зажимам 5 («+» и «-»). К этим же зажимам присоединяют сварочные провода, подводящие сварочный ток к электроду и изделию. Для охлаждения преобразователя во время его работы на валу имеется вентилятор 7.
Ходовая часть преобразователя состоит из переднего поворотного колеса с тягой 9 и двух задних колес, сидящих на одной оси. Это позволяет передвигать его на небольшое расстояние. Для подъема и перемещения преобразователя предусмотрены два рым-болта.
Сварочный ток регулируется с помощью маховичка 3 реостата: при вращении его по часовой стрелке сварочный ток увеличивается, и наоборот.
Медицинские осмотры работников
Билет № 12
1. Сварочная проволока (назначение, требования, химический состав, маркировка).
Сварочная проволока (назначение, требования, химический состав, маркировка).
Для сварки сталей применяется специальная стальная проволока по ГОСТу 2246-70. Используется в основном низкоуглеродистая и низколегированная сталь. Предусмотрено 77 марок сварочной проволоки различного химического состава.
К сварочной проволоке предъявляются следующие требования:
• она должна расплавляться спокойно и равномерно;
• температура плавления должна быть меньше или равна температуре плавления основного металла;
• должна быть очищенной от ржавчины и грязи;
• должна по химическому составу соответствовать химическому составу свариваемого металла.
Условное обозначение проволоки рассмотрим на примере.
2Св-08А, где:
2 — диаметр проволоки 2 мм;
Св — сварочная проволока;
08 — 0,08% — содержание углерода;
А — повышенное качество металла.
В марке могут присутствовать две буквы АА (Св-08АА), что говорит о том, это материал проволоки особо качественный.
Под качеством понимается пониженное содержание в стали вредных примесей — серы и фосфора. Повышенное содержание углерода в проволоке приводит к снижению пластичности металла.
В марке проволоки могут присутствовать легирующие элементы (Св-12ГС; Св-15ГСТЮЦА):
Г — 1% марганца; С — 1% кремния.
Если после буквы, обозначающей легирующий элемент, не стоит цифра, то содержание этого элемента в стали до 1%. Цифра показывает содержание элемента в целых долях процента.
Условные обозначения легирующих элементов:
С — кремний
Н — никель
М — молибден
Т — титан
Ю — алюминий
Ц — цирконий
Г — марганец
X — хром
В — вольфрам
Ф — ванадий
Проволока различается по диаметру. Диаметр проволоки — от 1 до 12 мм.
Проволока диаметром от 1,6 до 6 мм применяется для ручной дуговой сварки (металлический стержень электрода). Проволока диаметром более 6 мм называется прутами и применяется для сварки чугуна и цветных металлов, наплавочных работ. Проволока диаметром от 2 до 5 мм — для автоматической сварки.
Диаметр проволоки для газовой сварки выбирается в зависимости от толщины металла и способа сварки.
Для сварки правым способом диаметр присадочной проволоки равен d=S/2.
Для сварки левым способом диаметр присадочной проволоки равен d=S/2+1.
2. Высокопроизводительные виды ручной дуговой сварки (значение, виды, техника выполнения).
Под производительностью в сварке понимают количество сварочного шва в метрах, выполненного за определенный интервал времени.
Этого можно достичь, используя различные прогрессивные приемы и усовершенствования выполнения ручной сварки (организация рабочего места сварщика, уменьшение время на переход с одной операции на другую). Все это позволяет увеличить сварщикам время горения дуги в течение рабочего времени на 10-15%, так как время смены электрода составляет 7-10% времени рабочего дня.
Чтобы увеличить производительность сварочных работ, существуют еще и специальные технические мероприятия и способы, а именно:
• сварка высокопроизводительными покрытыми электродами;
• сварка сдвоенным электродом, гребенкой электродов, трехфазной дугой;
• сварка глубоким проплавлением;
• сварка лежачим электродом;
• сварка наклонным электродом.
Рис. 33. Схема сдвоенного электрода (а), гребенки (б) и сварка трехфазным током (в, г):
1 — связка электродов; 2 — трехфазный трансформатор; 3,4 — электроды; 5 — дуга
Рассмотрим эти способы.
Сварка высокопроизводительными покрытыми электродами. Наиболее эффективны электроды с железным порошком в покрытии. Это повышает коэффициент наплавки. При сварке покрытыми электродами с железным порошком в образовании шва принимает участие не только металл электродного стержня, но и железный порошок, введенный в состав покрытия. Эти электроды должны называться высокопроизводительными.
Производительность электродов характеризуется массой электродного металла, перешедшего на изделие за единицу времени.
К этим электродам относятся электроды марок: АНО-1, ОЗС-3, АНО-19, которые при содержании 50-65% железного порошка дают 65-70 г/мин наплавленного металла (по сравнению с 23-30 г/мин для обычных электродов: АНО-4, MP-3, ОЗС-4 и др.). Однако следует учитывать, что высокопроизводительные электроды позволяют выполнять сварку только в нижнем и наклонном (угол 15-20°) положениях. Источники питания для сварки этими электродами должны иметь повышенное напряжение холостого хода.
Сварка сдвоенным электродом, гребенкой электродов, трехфазной дугой. При сварке сдвоенным электродом процесс ведут двумя стержнями, соединенными между собой контактной точечной сваркой (рис. 33, а).
Дуга переходит с одного стержня на другой, попеременно оплавляя их. Производительность сварки повышается на 20-40% по сравнению со сваркой одностержневым электродом. Это повышение достигается попеременным подогревом каждого из стержней дугой, горящей между соседними стержнями и изделием, увеличением времени горения дуги, уменьшением времени на смену электродов.
Электроды располагаются так, чтобы их общая ось совпадала с осью шва или при большой разделке кромок была перпендикулярна этой оси.
Сварочный ток составляет:
• от 100-180 А — при диаметре электродов 3+3 мм;
• 300-400 А — при диаметре 6+6 мм.
Сдвоенными электродами можно сваривать за один проход металл толщиной до 12 мм.
Электроды можно располагать по несколько стержней в ряд в виде гребенки (рис. 33, б).
Дуга возбуждается на электроде, находящемся на более близком расстоянии от свариваемого изделия. При плавлении электрода дуга переходит с одного на другой стержень и т. д.
Электродная гребенка позволяет глубоко опускаться в разделку кромок. Производительность сварки повышается вдвое по сравнению со сваркой обычным электродом.
Производительность ручной дуговой сварки можно повысить еще на большую величину, если использовать трехфазный ток (рис. 33, в).
При сварке трехфазной дугой применяют два электрода, к которым подводятся две фазы от источника питания, а третья фаза — к свариваемому изделию. В каждый данный момент в процессе изменения синусоидального тока могут гореть одна или две дуги. При этом выделяется большое количество теплоты, скорость плавления металла возрастает, и производительность сварки увеличивается на 50-60% по сравнению со сваркой однофазной дугой.
Однако при сварке трехфазной дугой сильно утяжелен электрододержатель, что ведет к утомляемости сварщика. Поэтому такую сварку лучше выполнять механизированными способами.
Сварка глубоким проплавлением. Этот вид сварки еще называют сваркой опиранием.
Для сварки применяют электроды с увеличенной толщиной покрытия. Стальной стержень электрода плавится несколько быстрее покрытия, в результате чего на конце электрода из покрытия образуется втулка (козырек). Опирая втулку электрода на поверхность изделия, сварщик перемещает дугу вдоль шва.
Образующиеся при плавлении покрытия газы своим давлением вытесняют жидкий металл из сварочной ванны, образуя валик, изделие проплавляется на большую величину, чем при сварке электродом на весу. При этом объем наплавленного металла в сварном шве значительно уменьшается без снижения прочности шва.
Этот способ сварки позволяет уменьшать глубину разделки кромок и сваривать металл значительной толщины без разделки кромок с большой скоростью. Сварку выполняют без колебательных поперечных движений электрода.
Техника сварки опиранием заключается в том, что после зажигания дуги сварщик устанавливает электрод под углом 70-80° к плоскости изделия, опускает покрытие электрода на поверхность изделия, и дуга автоматически будет перемещаться по оси шва.
Способ сварки опиранием особенно целесообразно применять при выполнении угловых швов в положении в «лодочку», используя для этого электроды марки ОЗС-3.
Сварку опиранием в вертикальном положении по направлению сверху вниз можно выполнять электродами АНО-9.
Сварка наклонным электродом (рис. 34, а).
Электрод опирается краем покрытия о свариваемый металл. Второй конец электрода зажат в обойме, которая во время сварки свободно опускается, скользя по штанге. Угол наклона электрода остается постоянным. Дуга возбуждается так же, как и при сварке лежачим электродом.
Производительность труда сварщика при использовании этих способов возрастает, так как один сварщик может работать сразу на нескольких постах.
Для сварки наклонным и лежачим электродом необходимы специальные электроды марок ОЗС-12, ОЗС-15Н (наклонный электрод), ОЗС-17Н. Электроды изготовляют диаметрами 4, 5, 6 мм и длиной от 450 до 700 мм.
Сварка лежачим электродом (рис. 34, б).
В разделку свариваемых деталей укладывают один или несколько электродов, длина которых обычно в два раза больше стандартных. От вытекания металла при выполнении стыкового шва предохраняет медная подкладка. При выполнении углового шва подкладка не требуется. Сверху электроды прижимаются к кромкам деталей медной или бронзовой колодкой. Дуга возбуждается вспомогательным электродом и затем продолжает гореть, расплавляя электрод и основной металл. Длина дуги равна толщине покрытия, составляющей 1,5-3,0 мм.
Сварку лежачим электродом можно осуществлять и под слоем флюса. Она может применяться для выполнения как прямолинейных, так и криволинейных швов, для чего необходимы специальные приспособления.
Рис. 34. Схема сварки:
а — наклонным электродом: 1 — электрод; 2 — обойма; 3 — штанга;
б — лежачим электродом: 1 — шов; 2 — дуга; 3 — лежачий электрод; 4 — свариваемый металл
3. Газовые шланги (рукава) (назначение, классификация, требования техники безопасности).
Рукава служат для подвода газа к горелке или резаку. Рукава, применяемые при газовой сварке и резке, должны обладать достаточной прочностью, выдерживать определенное давление, быть гибкими и не стеснять движений сварщика.
Согласно ГОСТу 9356-75, рукава делают из вулканизированной резины с тканевыми прокладками.
Кислородные рукава имеют внутренний и наружный слой из вулканизированной резины и несколько слоев из льняной или хлопчатобумажной ткани.
В зависимости от назначения резиновые рукава для газовой сварки и резки металлов подразделяют на следующие классы:
• I — для подачи ацетилена, городского газа, пропана и бутана под давлением до 0,63 МПа;
• II — для подачи жидкого топлива (бензина, уайт-спирита, керосина или их смеси) под давлением до 0,63 МПа;
• III — для подачи кислорода под давлением до 2 МПа.
Внутренний диаметр рукавов равен 6,3; 8,0; 9,0; 10,0; 12,0; 12,5; 16,0 мм.
Рукава поставляют длиной 10 и 14 м.
В зависимости от назначения наружный слой рукава окрашивают в следующие цвета:
• красный — рукава I класса;
• желтый — рукава II класса;
• синий — рукава III класса.
Рукава предназначаются для работы при температуре от +50 до -35°С (238°К), для более низкой температуры изготовляют рукава из морозостойкой резины, выдерживающей температуру до -65°С (208°К).
Все рукава должны иметь не менее чем трехкратный запас прочности при разрыве гидравлическим давлением. Рукава II класса должны быть бензостойкими.
Для нормальной работы горелкой или резаком длина рукавов не должна превышать 20 м, при использовании более длинных рукавов значительно снижается давление газа.
В монтажных условиях рукава можно удлинять до 40 м, на использование более длинных требуется специальное разрешение.
Для удлинения кислородных рукавов служат латунные, а ацетиленовых — стальные ниппели, снаружи закрепляющиеся специальными хомутами. Запрещается применение ниппелей для соединения рукавов, по которым проходит бензин или керосин, так как горючее может просочиться в соединение.
Количество соединений рукавов не более трех.
Рукава необходимо надежно крепить на горелках, резаках, редукторах, бачках жидкого горючего. Хранят рукава в помещении при температуре от 0 до +25°С.
Дата добавления: 2018-08-06 ; просмотров: 448 ;
Практическая работа №10 по МДК.01.01. Изучение устройства сварочных преобразователей. Технические характеристики преобразователей (работа с каталогами)
Как организовать дистанционное обучение во время карантина?
Помогает проект «Инфоурок»
Практическая работа №10
Тема : Изучение устройства сварочных преобразователей. Технические характеристики преобразователей (работа с каталогами)
Цель работы : Приобрести практические навыки при изучении устройства сварочных преобразователей, технических характеристик выпрямителей (работа с каталогами)
Ход выполнения работы:
Ознакомление с теоретическими сведениями
Изучить конструкцию сварочных преобразователей по паспортам и каталогам.
Зарисовать схему и дать описание устройства преобразователя (по выбору преподавателя).
Описать отличия сварочных агрегатов от сварочных преобразователей
Начертить таблицу: «Технические характеристики сварочного преобразователя»
Ответить на контрольные вопросы.
Сварочные генераторы — широко применяются для сварки конструкций.
Они обладают следующими преимуществами по сравнению с источниками переменного тока:
дуга постоянного тока горит более устойчиво из-за отсутствия затуханий, связанных с изменениями полярности переменного синусоидального тока;
ввиду высокой стабильности дуги постоянного тока обеспечивается высокое качество сварки (отсутствие непроваров, включений и других дефектов);
при сварке постоянным током возможно применение всех выпускаемых промышленностью марок электродовтродов, в то время — как электроды некоторых марок непригодны для сварки переменным током;
источники питания постоянным током менее чувствительны к колебаниям напряжения в сети, чем трансформаторы;
источники постоянного тока — сварочные генераторы, вырабатывающие постоянный ток, — удобны для использования в комплекте с двигателями внутреннего сгорания при монтажных работах в местах, где отсутствует электроэнергия.
Наряду с указанными выше преимуществами сварочные генераторы постоянного тока имеют следующие недостатки:
генераторы имеют движущиеся (вращающиеся) с большой скоростью части, за которыми должно быть установлено постоянное техническое наблюдение и обслуживание;
токосъемные устройства генераторов должны подвергаться периодическому ремонту или замене;
коэффициент полезного действия их ниже, чем, у трансформаторов;
они более сложны и трудоемки в изготовлении, поэтому их стоимость более высокая;
расход электроэнергии и другие технико-экономические показатели у генераторов хуже, чем у трансформаторов.
Классификация сварочных преобразователей:
По количеству одновременно подключенных постов:
однопостовые, предназначенные для питания одной сварочной дуги;
многопостовые, питающие одновременно несколько сварочных дуг;
По способу установки:
стационарные, устанавливаемые неподвижно на фундаментах;
передвижные, монтируемые на тележках;
По роду двигателей, приводящих генератор во вращение:
машины с электрическим приводом;
машины с двигателем внутреннего сгорания (бензиновым или дизельным);
По способу выполнения:
однокорпусные, в которых генератор и двигатель вмонтированы в единый корпус;
раздельные, в которых генератор и двигатель установлены в единой рамке, а привод осуществляется через специальную соединительную муфту.
Однопостовые сварочные преобразователи состоят: из генератора и электродвигателя или двигателя внутреннего сгорания.
Сварочные генераторы изготовляют по электромагнитным схемам, которые обеспечивают падающую внешнюю характеристику и ограничение тока короткого замыкания.
Рис. Внешний вид сварочного преобразователя:
1 – медные пластинки корректора; 2 – щетки генератора; 3 – регулировочный реостат; 4 – распределительное устройство; 5 – зажимы; 6 – вольтметр; 7 – вентилятор; 8 – трехфазный асинхронный двигатель; 9 – тяга; 10 – магнитные полюсы;11 – корпус; 12 – якорь
Сварочные генераторы — это специальные генераторы постоянного тока, внешняя характеристика которых позволяет получать устойчивое горение дуги, что достигается изменением магнитного потока генератора в зависимости от сварочного тока.
Сварочный генератор постоянного тока состоит из статора с магнитными полюсами и якоря с обмоткой и коллекторами. При работе генератора якорь вращается в магнитном поле, создаваемом полюсами статора. Обмотка якоря пересекает магнитные линии полюсов генератора, и поэтому в витках обмотки возникает переменный ток, который с помощью коллектора преобразуется в постоянный. Вращение якоря сварочного генератора обеспечивается в сварочных преобразователях электродвигателем, а в сварочных агрегатах – двигателем внутреннего сгорания. К коллектору прижаты угольные щетки (токосъемники), через которые постоянный ток подводится к зажимам. К этим зажимам присоединяют сварочные провода, идущие к электрододержателю и изделию. Сварочный ток регулируется реостатом (маховичком), включенным в обмотку магнитных полюсов. На валу между электродвигателем и генератором находится вентилятор, предназначенный для охлаждения генератора во время работы.
Таблица. Технические характеристики преобразователей
Пределы регулирования сварочного тока, А
Устройство сварочного инвертора
Принцип работы сварочного инвертора
В настоящее время стали очень популярны и доступны по цене сварочные аппараты инверторного типа.
Несмотря на свои положительные качества, они, как и любое другое электронное устройство, временами выходит из строя.
Чтобы отремонтировать инвертор сварочного аппарата нужно хотя бы поверхностно знать его устройство и основные функциональные блоки.
В первых двух частях будет рассказано об устройстве сварочного аппарата модели TELWIN Tecnica 144-164. В третьей части будет рассмотрен пример реального ремонта сварочного инвертора модели TELWIN Force 165. Информация будет полезна всем тем начинающим радиолюбителям, которые хотели бы научиться самостоятельно ремонтировать сварочные аппараты инверторного типа.
Дальше будет много букв – наберитесь терпения .
Сам инверторный сварочный аппарат представляет не что иное, как довольно мощный блок питания. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX. Вы спросите: «Чем они похожи? Это ведь абсолютно разные устройства…». Схожесть заключается в принципе преобразования энергии.
Основные этапы преобразования энергии в инверторном сварочном аппарате:
1. Выпрямление переменного напряжения электросети 220V;
2. Преобразование постоянного напряжения в переменное высокой частоты;
3. Понижение высокочастотного напряжения;
4. Выпрямление пониженного высокочастотного напряжения.
Это кратко, так сказать, на пальцах . Такие же преобразования происходят в импульсных блоках питания для ПК.
Спрашивается, а зачем нужны эти пляски с бубном (несколько ступеней преобразования напряжения и тока)? А дело тут вот в чём.
Ранее основным элементом сварочного аппарата являлся мощный силовой трансформатор. Он понижал переменное напряжение электросети и позволял получать от вторичной обмотки огромные токи (десятки – сотни ампер), необходимых для сварки. Как известно, если понизить напряжение на вторичной обмотке трансформатора, то можно во столько же раз увеличить ток, который может отдать нагрузке вторичная обмотка. При этом уменьшается число витков вторичной обмотки, но и растёт диаметр обмоточного провода.
Из-за своей высокой мощности, трансформаторы, которые работают на частоте 50 Гц (такова частота переменного тока электросети), имеют весьма большие размеры и вес.
Чтобы устранить этот недостаток были разработаны инверторные сварочные аппараты. За счёт увеличения рабочей частоты до 60-80 кГц и более, удалось уменьшить габариты, а, следовательно, и вес трансформатора. За счёт увеличения рабочей частоты преобразования в 4 раза удаётся снизить габариты трансформатора в 2 раза. А это приводит к уменьшению веса сварочного аппарата, а также к экономии меди и других материалов на изготовление трансформатора.
Но где взять эти самые 60-80 кГц, если частота переменного тока электросети всего 50 Гц? Тут на выручку приходит инверторная схема, которая состоит из мощных ключевых транзисторов, которые переключаются с частотой 60-80 кГц. Но чтобы транзисторы работали, необходимо подать на них постоянное напряжение. Его получают от выпрямителя. Напряжение электросети выпрямляется мощным диодным мостом и сглаживается фильтрующими конденсаторами. В результате на выходе выпрямителя и фильтра получается постоянное напряжение величиной более 220 вольт. Это первая ступень преобразования.
Вот это напряжение и служит источником питания для инверторной схемы. Мощные транзисторы инвертора подключены к понижающему трансформатору. Как уже говорилось, транзисторы переключаются с огромной частотой в 60-80 кГц, а, следовательно, трансформатор работает также на этой частоте. Но, как уже говорилось, для работы на высоких частотах требуются менее громоздкие трансформаторы, ведь частота то уже не 50 Гц, а все 65000 Гц! В результате трансформатор «сжимается» до весьма малых размеров, а мощность его такая же, как и у здоровенного собрата, который работает на частоте 50 Гц. Думаю, идея понятна.
Вся эта петрушка с преобразованием привела к тому, что в схемотехнике сварочного аппарата появляется куча всяких дополнительных элементов, служащих для того, чтобы аппарат стабильно работал. Но, хватить теории, перейдём к «мясу», а точнее к реальному железу и тому, как оно устроено.
Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок.
Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата. К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164. Фотографии аппарата и его начинки будут от TELWIN Force 165, так как именно он оказался в моём распоряжении. Исходя из анализа схемотехники и элементной базы, особых отличий между этими моделями практически нет, если не учитывать мелочи.
Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.
Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.
Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).
Сетевой выпрямитель.
Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами. Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя. Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.
Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V). Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.
На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор. Через диодную сборку протекают большие токи и диоды, естественно, нагреваются. Для защиты диодного моста на радиаторе установлен термопредохранитель, который размыкается при превышении температуры радиатора выше 90С 0 . Это элемент защиты.
В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I) — 35А, обратное напряжение (VR) — 800V.
После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.
Помеховый фильтр.
Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости. На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility). Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.
Схема инвертора собрана по схеме так называемого «косого моста». В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET. Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла. Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.
Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.
Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.
Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.
Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.
За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют. Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3. Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.
Размеры этого самого трансформатора невелики.
Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер!
Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.
Выходной выпрямитель.
Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).
Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.
В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.
Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).
Схема запуска и реализация «мягкого пуска».
Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор. Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W). Эти резисторы понижают напряжение и участвуют при запуске схемы.
Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.
Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».
Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – «Зелёный»). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.
Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.
В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.
Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.
После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.
На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V
Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?
Об этом мы узнаем из следующей части нашего повествования. Читать далее.
Сварочный преобразователь его строение и назначение
§ 98. Сварочные преобразователи постоянного тока и сварочные агрегаты
Классификация сварочных преобразователей и агрегатов. Для сварки постоянным током источниками питания служат сварочные преобразователи и сварочные агрегаты. Сварочный преобразователь состоит из генератора постоянного тока и приводного электродвигателя, сварочный агрегат — из генератора и двигателя внутреннего сгорания. Сварочные агрегаты употребляются для работы в полевых условиях и в тех случаях, когда в питающей электрической сети сильно колеблется напряжение. Генератор и двигатель внутреннего сгорания (бензиновый или дизельный) монтируются на общей раме без колес, на катках, колесах, в кузове автомашины и на базе трактора.
Для работы в разных условиях выпускаются агрегаты: АСБ-300-7 — бензиновый двигатель ГАЗ-320, смонтированный с генератором ГСО-300-5 на раме без колес; АСД-3-1 — дизельный двигатель и генератор СГП-3-VIII — в том же исполнении; АСДП-500 — как и предыдущий агрегат, но установленный на двухосном прицепе; СДУ-2 — агрегат, смонтированный на базе трактора Т-100М; ПАС-400-VIII — двигатель типа ЗИЛ-164. и генератор СГП-3-VI, смонтированные на жесткой раме, снабженной роликами для перемещения по ровному полу. Выпускаются и другие агрегаты, отличающиеся конструктивным исполнением.
Сварочные генераторы бывают однопостовыми и многопостовыми, рассчитанными для одновременного питания нескольких сварочных постов. Однопостовые сварочные генераторы изготовляются с падающей или жесткой внешними характеристиками.
Большая часть генераторов, комплектующих сварочные агрегаты и преобразователи (типа ПС и ПСО), имеют падающую внешнюю характеристику. Генератор преобразователя типа ПСГ имеет жесткую вольт-амперную характеристику. Выпускаются генераторы универсальные, позволяющие получать и падающую, и жесткую характеристики (преобразователи типа ПСУ).
Сварочные преобразователи ПСО-500, ПСО-ЗООА, ПСО-120, ПСО-800, ПС-1000, АСО-2000, ПСМ-1000-4 и другие снабжаются в основном асинхронными трехфазными короткозамкнутыми двигателями в однокорпусном исполнении. Они имеют колеса для перемещения по цеху или устанавливаются неподвижно на плите.
Технические данные некоторых преобразователей приведены в табл. 51.
51. Технические данные преобразователей типа ПСО, ПСГ, ПСУ
Устройство и работа сварочных генераторов. Промышленностью выпускаются сварочные генераторы трех типов: с независимой и параллельной обмотками возбуждения, размагничивающей последовательной обмоткой и с расщепленными полюсами.
Генераторы с независимой обмоткой возбуждения и размагничивающей последовательной обмоткой (рис. 119) применяются главным образом в сварочных преобразователях ПС0420, ПСО-ЗООА, ПСО-500, ПСО-800, ПС-1000, АСО-2000, отличающихся мощностью и конструктивным оформлением.
На схеме генератора (рис. 199, а) показаны две обмотки возбуждения: независимая Н и последовательная С, которые расположены на разных полюсах. В цепь независимой обмотки включен реостат РТ. Последовательная обмотка изготовлена из шины большою сечения, так как в ней протекает большой сварочный ток. От части ее витков сделана отпайка, вынесенная на переключатель П.
Рис. 119. Генератор с независимым возбуждением и размагничивающей последовательной обмоткой: а — принципиальная электрическая схема, б — внешние характеристики
Магнитный поток последовательной обмотки направлен навстречу магнитному потоку, создаваемому независимой обмоткой возбуждения. В результате действия этих потоков появляется результирующий поток. При холостом ходе последовательная обмотка не работает.
Напряжение холостого хода генератора определяется током в обмотке возбуждения. Это напряжение можно регулировать реостатом РТ, изменяя величину тока в цепи намагничивающей обмотки.
При нагрузке в последовательной обмотке появляется сварочный ток, создающий магнитный поток противоположного направления. С увеличением сварочного тока противодействующий магнитный поток увеличивается, а рабочее напряжение уменьшается. Таким образом образуется падающая внешняя характеристика генератора (рис. 119, б).
Изменяют внешние характеристики регулированием тока в обмотке независимого возбуждения и переключением числа витков размагничивающей обмотки.
При коротком замыкании сила тока возрастает настолько, что размагничивающий поток резко увеличивается. Результирующий поток, а следовательно, и напряжение на клеммах генератора практически падают до нуля.
Сварочный ток регулируется двумя способами: переключением числа витков размагничивающей обмотки (два диапазона) и реостатом в цепи независимой обмотки (плавное регулирование). При подключении сварочного провода на левую клемму (рис. 119, а) устанавливаются малые токи, на правую — большие.
Генераторы с параллельной намагничивающей и последовательной размагничивающей обмотками возбуждения относятся к системе генераторов с самовозбуждением (рис. 120). Поэтому их полюса изготовляются из ферромагнитной стали, имеющей остаточный магнетизм.
Как видно из схемы (рис. 120, а), генератор имеет на основных полюсах две обмотки: намагничивающую Н и последовательно включенную размагничивающую С. Ток намагничивающей обмотки создается якорем самого генератора, для чего служит третья щетка С, расположенная на коллекторе посредине между основными щетками а и б.
Рис. 120. Генератор с самовозбуждением и размагничивающей последовательной обмоткой: а — принципиальная электрическая схема, б — внешние характеристики
Встречное включение обмоток создает падающую внешнюю характеристику генератора (рис. 120, б). Сварочный ток плавно регулируется реостатом РП, включенным в цепь обмотки самовозбуждения. Для ступенчатого регулирования тока размагничивающая обмотка секционирована так же, как и в генераторе типа ПСО. По такой схеме работают генераторы сварочных преобразователей ПС-300, ПСО-ЗООМ, ПС-3004, ПСО-300 ПС-500, САМ-400.
Генератор с расщепленными полюсами (рис. 121) не имеет последовательной обмотки. В этом генераторе расположение полюсов отличается от обычных электрических генераторов постоянного тока. Магнитные полюса не чередуются (за северным следует южный, затем опять северный и т. д.), а одноименные полюса располагаются рядом (два северных и два южных, рис. 121, б). Горизонтальные полюса Nr называются главными, а вертикальные Nп — поперечными.
Рис. 121. Генератор с расщепленными полюсами: а, б — принципиальные магнитная и электрическая схемы; Ф г я, Ф п я — магнитные потоки якоря, Фг — главный магнитный поток, Фп — поперечный магнитный поток, ГН — нейтраль, П — обмотка поперечных полюсов, Гл — обмотка главных полюсов, РТ — реостат
Главные полюса имеют вырезы, уменьшающие их поперечное сечение для полного насыщения магнитным потоком уже при холостом ходе. Поперечные полюса имеют большое сечение и работают на всех режимах при неполном насыщении. На главных полюсах размещены только главные обмотки возбуждения, а на поперечных — только поперечные. В цепи поперечных обмоток возбуждения установлен регулировочный реостат РТ. Обе обмотки включены между собой параллельно и получают питание от щеток, т. е. генератор работает с Самовозбуждением. Генератор имеет две главные щетки а и б и дополнительную щетку с.
При нагрузке в обмотке якоря появляется ток, который создает магнитный поток якоря, подмагничивающий главные полюса и размагничивающий поперечные. Так как главные полюса полностью насыщены, то действие подмагничивающего потока не сказывается. С увеличением сварочного тока магнитный поток якоря увеличивается, его размагничивающее действие (против потока поперечных полюсов) возрастает и это приводит к уменьшению рабочего напряжения; создается падающая внешняя характеристика генератора. Таким образом, падающая характеристика генератора получается за счет размагничивающего действия магнитного потока якоря.
Плавное регулирование сварочного тока осуществляется реостатом в цепи поперечной обмотки возбуждения 1 .
1 (В выпускавшихся ранее генераторах этого типа (СУГ-2а, СУГ-26 и др.) грубая регулировка тока осуществлялась смещением щеток от нейтрали.)
По схеме с расщепленными полюсами работают генераторы преобразователей ПС-300М, СУГ-2ру и др.
Конструкции однопостовых сварочных преобразователей. Преобразователи ПС-300-1 и ПСО-300 служат для питания одного поста, для сварки, наплавки и резки. Преобразователи рассчитаны на рабочий ток от 65 до 340 А.
Сварочный генератор преобразователя относится к типу генератора с параллельной намагничивающей и последовательной размагничивающей обмотками возбуждения.
Генератор имеет крутопадающие внешние характеристики (рис. 120, б) и два диапазона сварочных токов: 65 — 200 А и при подключении сварочного кабеля к левому зажиму (+) с полным числом витков последовательной размагничивающей обмотки; 160 — 340 А — при подключении к правому зажиму (+) с частью витков последовательной обмотки. В цепь намагничивающей обмотки возбуждения включен реостат типа РУ-Зб сопротивлением 2,98 Ом на токи 4,5 — 12 А, предназначенный для регулирования сварочного тока.
Преобразователь ПСГ-300-1 предназначен для питания поста полуавтоматической сварки в защитном газе. Генератор преобразователя имеет жесткую внешнюю характеристику, которая создается подмагничивающим действием последовательной обмотки возбуждения. Независимая обмотка возбуждения питается от селенового выпрямителя, подключенного к сети переменного тока через феррорезонансный стабилизатор. В цепь обмотки независимого возбуждения включен реостат, позволяющий плавно регулировать напряжение на зажимах генератора от 16 до 40 В. Преобразователь включается в сеть пакетным выключателем. Пределы регулирования сварочного тока 75 — 300 А.
Универсальные сварочные преобразователи ПСУ-300, ПСУ-500 имеют как падающие, так и жесткие внешние характеристики. Преобразователи этого типа состоят из однопостового сварочного генератора постоянного тока и приводного трехфазного асинхронного двигателя с короткозамкнутым ротором, находящихся в одном корпусе.
Сварочный генератор типа ГСУ изготовляется с четырьмя основными и двумя дополнительными полюсами (рис. 122). На двух основных полюсах уложены витки основной намагничивающей обмотки возбуждения, которая получает питание от сети через стабилизирующий трансформатор и селеновый выпрямитель. На двух других основных полюсах уложены витки последовательной обмотки возбуждения; магнитный поток этих полюсов направлен навстречу основному намагничивающему потоку. Обмотки дополнительных полюсов предназначены для улучшения коммутации.
Рис. 122. Сварочный универсальный преобразователь типа ПСУ: а — электрическая схема, б — внешние характеристики ГСУ-300; В — выпрямитель, НО — независимая обмотка возбуждения, ПП — переключатель последовательной обмотки, Д — дроссель, Г — сварочный генератор, R — реостат для регулирования напряжения и тока
Для получения крутопадающих внешних характеристик включается независимая обмотка возбуждения, последовательная размагничивающая и часть витков обмотки дополнительных полюсов.
При переходе на жесткие внешние характеристики (рис. 122, б) последовательная размагничивающая обмотка частично отключается, но включается увеличенное количество витков обмотки дополнительных полюсов.
Изменение вида характеристики осуществляется переключением пакетного переключателя, установленного на распределительном устройстве, и присоединением сварочных проводов к двум соответствующим зажимам на клеммовой доске.