Индукционная печь для закалки металла

Экономия для кузнеца: делаем муфельную печь для закалки металла своими руками

Муфельная печь – специализированная конструкция, позволяющая нагревать различные металлы до необходимой температуры.

Муфель обладает свойством сохранять металл от прямого контакта с топливом или газами. Печи со стационарной нагревательной камерой и сменными муфелями работают по схожему принципу.

Методы для закалки металла

Существует несколько способов обработки металлов с помощью данного устройства:

  • Термообработка: отжиг, закалка, отпуск, состаривание.
  • Работа с ценными материалами, переплавка металлов, когда использование открытого огня недопустимо.
  • Для получения ровного тона поверхности, особенно при обработке керамики(высокохудожественной) используется муфельная печь.
  • Сушка диэлектриков.
  • Кремация, сжигание до минеральных компонентов.

Как работает муфельная печь?

Для того, чтобы понять, как работает устройство для закалки металла, происходит процесс взаимодействия различных элементов, рассмотрим внимательно ее строение:

  • Корпус печи. Если осталась старая газовая плита, с встроенным духовым шкафом, то она прекрасно подойдет для основы устройства. Лучший размер для такого духового шкафа: 70см-50см-60см. Такие габариты удобны для работы с термообработкой.

Внимание! Если вы решились использовать как основную конструкцию бывшую газовую плиту, то произведите демонтаж пластиковых составляющих. Иначе произойдет расплавление всех материалов.

  • Внутренний слой. Непосредственный контакт с поверхностью топки. Коэффициент полезных действий зависит от этой части конструкции, поэтому использовать следует огнеупорный шамотный кирпич.

Фото 1. Огнеупорный шамотный кирпич — обязательный элемент для внутреннего слоя при изготовлении печи своими руками.

  • Внешний слой. Его цель – сокращение потерь передачи тепла. Широко используются перелит и базальтовая вата для достижения эффекта.

Совет! Не используйте асбест как внешний слой. Нагреваясь, этот материал выделяет канцерогены.

  • Нагрев рабочего пространства. Спирали, созданные из нихромовой или фехралевой проволоки, отвечают за процесс нагревания всей газовой плиты. Лучше использовать фехралевые, так как они более пластичны, но нихромовые – дешевле.

Устройство для плавки алюминия и меди

Легкоплавкие металлы отличаются хрупкостью. Важно соблюдать схемы работы с данным типом металлов.

Так, например, для плавления меди или алюминия, муфельная печь должна разогреться до 1083, а для плавления бронзы – 930 по Цельсию.

Эти материалы среди остальных легкоплавких имеют самые высокие показатели температуры плавления.

Значит, напрашивается вывод: для работы с легкоплавкими металлами необходима печь, разогревающаяся максимум до 1100 градусов.

Нюанс! Для крупного литья при работе с легкоплавкими металлами устанавливается горн. А плавить металл можно в емкости с «носиком» (тигель). Так легче всего предать ему в последующем форму.

Этапы работы с легкоплавкими материалами

  1. Прокалка печи для заливки на температуре 600 градусов.
  2. Погружение формы.
  3. Нагревание температуры до 900 градусов.
  4. Засекаем время пребывания формы в печи – 120 минут.
  5. Вынимаем форму и остужаем до 500 градусов.
  6. Легкоплавкий материал помещается в форму.

Плавка золота

Тугоплавкие металлы, например, золото, в работе отличаются высокой температурой плавления. Так, для успешного решения задачи, необходимо будет разогреть печь до 1300 градусов, при условии того, что мы работаем со сталью (по другим материалами надо смотреть коэффициент тугоплавкости).

Необходимо учитывать фактор материалов растопки. Так, протопить печь можно всеми бытовыми ненужными материалами, исключая токсичные, то есть выделяющие ядовитые вещества в процессе горения.

Этапы работы с тугоплавкими материалами

Индукционная муфельная печь своими руками

Муфельные печи – это конструкция, необходимая для творчества ювелиров, кузнецов, других мастеров, работающих с керамикой, с закалкой стали. Обычно индукционная муфельная печь для плавки дорогостоящая, но есть возможность сделать ее своими руками.

Необходимые материалы и инструменты

Изготовление конструкции

  • Монтаж основной части. На внутренних сторонах шамотных кирпичей выпиливаем поперечные отверстия. Они служат для установки нагревательной спирали. Такие пазы увеличивают объем печи, то есть внутреннего пространства, с которым работать эффективнее. Кирпичи складываем и закрепляем в форме призмы. Ликвидируем щели.​
  • Изготовление стенок. Используемые материалы: кантал, фехраль, нихром. Устанавливать материалы можно совершенно любым способом, но лучше сложить их кругом. Так, не будет перепада температур, так негативно влияющих на процесс термической обработки.

Фото 2. Основная часть муфельной печи собирается из шамотных кирпичей, в которых выпиливаются отверстия.

  • Установление теплоизоляции. Эффективность зависит от степени удерживания температуры внутри конструкции. Сама теплоизоляция — это смесь, состоящая из 0,8 частей цемента и 0,2 частей перлита. Смесь между призмой и стенками должна настояться около 48 часов.
  • Изготовление дна. Создаем изогнутую заготовку для нижней части изделия, прикрепляем четыре маленьких кусочка стальной трубы – это ножки, на которые будет опираться печь. Внутрь изделия наливаем цементную смесь, после застывания прикладываем проволоку в виде сетки, для создания ровного и одномерного слоя. В конце наносим тальк.
  • Изготовление крышки. Одного размера с дном создаем заготовку, прикрепляем к нему ручки. Крышку заполняем раствором с цементом и перелитом.
  • Изготовление спирали. Нихромовую проволоку с сечением 0,1 см и прут из железа радиусом 3 мм. После снятия с прута проволоки получаем спираль. Витки не должны соприкасаться. Готовая спираль помещается в прорези, сделанные на первых этапах производства.

Фото 3. Спираль из нихромовой проволоки помещается в специальные прорези в огнеупорных кирпичах таким образом, чтобы витки не соприкасались.

  • Сборка и сушка печи. Собираем все элементы печи, устанавливаем их и просушиваем. Сушить изделие положено в хорошо продуваемом и вентилируемом месте. Применение нагревательных приборов в процессе сушки строго-настрого запрещено.

Внимание! В процессе создания необходимо с аптекарской точностью соблюдать все пропорции, указанные выше. Точно, скрупулезно, внимательно работать с каждым материалом, проверять его на наличие дефектов. Главная сложность — принципиальное выполнение инструкций.

Полезное видео

Видеосюжет, в котором представлен один из вариантов создания муфельной конструкции для закалки металла.

Муфельная печь – универсальный помощник

Муфельная печь – это устройство, которое упростит жизнь тем, кто работает с металлами. Это практически незаменимый инструмент. Сегодня современные муфельные устройства – это дорогая техника, со своими нюансами, сложностями и особенностями.

Легче сделать это своими руками, тем самым уберечь себя от заводского брака, понять технологию производства, получить новый опыт, необходимый для развития.

Индукционный нагрев, закалка и индукционная плавка металлов

Самым совершенным видом нагрева является такой, при котором тепло создается непосредственно в нагреваемом теле. Такой способ нагрева очень хорошо осуществляется пропусканием через тело электрического тока. Однако, прямое — включение нагреваемого тела в электрическую цепь не всегда возможно по причинам технического и практического характера.

В этих случаях совершенный вид нагрева может быть осуществлен применением индукционного нагрева, при котором тепло также создается в самом нагреваемом теле, что исключает излишний, обычно большой, расход энергий в стенках печи или в других нагревающих элементах. Поэтому, несмотря на сравнительно невысокий к. п. д. генерирования токов повышенной и высокой частоты, общий к. п. д. индукционного нагрева оказываётся часто выше, чем при других способах нагрева.

Индукционный способ позволяет также осуществлять быстрый нагрев неметаллических тел равномерно по всей их толщине. Плохая теплопроводность таких тел исключает возможность быстрого нагрева их внутренних слоев обычным способом, т. е. подводом тепла извне. При индукционном способе тепло образуется одинаково как в наружных слоях, так и во внутренних и может даже возникнуть опасность перегрева последних, если не сделать необходимой теплоизоляции наружных слоев.

Особо ценным свойством индукционного нагрева является возможность весьма высокой концентрации энергии в нагреваемом теле, легко поддающейся точной дозировке. Только электрической дугой можно получить тот же порядок плотности энергии, однако, этот способ нагрева трудно поддается контролю.

Особенности и общеизвестные преимущества индукционного нагрева создали широкие возможности применения его во многих отраслях промышленности. Кроме того, он позволяет создавать новые виды конструкций, которые вовсе не осуществимы пои обычных способах термообработки.

В индукционных печах и устройствах тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем. Таким образом, здесь осуществляется прямой нагрев.

Индукционный нагрев металлов основан на двух физических законах: законе электромагнитной индукции Фарадея-Максвелла и законе Джоуля-Ленца. Металлические тела (заготовки, детали и др.) помещают в переменное магнитное поле, которое возбуждает в них вихревое электрическое поле. ЭДС индукции определяется скоростью изменения магнитного потока. Под действием ЭДС индукции в телах протекают вихревые (замкнутые внутри тел) токи, выделяющие теплоту по закону Джоуля-Ленца. Эта ЭДС создает в металле переменный ток, тепловая энергия, выделяемая данными токами, является причиной нагрева металла. Индукционный нагрев является прямым и бесконтактным. Он позволяет достигать температуры, достаточной для плавления самых тугоплавких металлов и сплавов.

Читать еще:  Как сварить медь с нержавейкой

Интенсивный индукционный нагрев возможен лишь в электромагнитных полях высокой напряженности и частоты, которые создают специальными устройствами — индукторами. Индукторы питают от сети 50 Гц (установки промышленной частоты) или от индивидуальных источников питания — генераторов и преобразователей средней и высокой частоты.

Простейший индуктор устройств косвенного индукционного нагрева низкой частоты — изолированный проводник (вытянутый или свернутый в спираль), помещенный внутрь металлической трубы или наложенный на ее поверхность. При протекании по проводнику-индуктору тока в трубе наводятся греющие ее вихревые токи. Теплота от трубы (это может быть также тигель, емкость) передается нагреваемой среде (воде, протекающей по трубе, воздуху и т. д.).

Индукционный нагрев и закалка металлов

Наиболее широко применяется прямой индукционный нагрев металлов на средних и высоких частотах. Для этого используют индукторы специального исполнения. Индуктор испускает электромагнитную волну, которая падает на нагреваемое тело и затухает в нем. Энергия поглощенной волны преобразуется в теле в теплоту. Эффективность нагрева тем выше, чем ближе вид испускаемой электромагнитной волны (плоская, цилиндрическая и т. д.) к форме тела. Поэтому для нагрева плоских тел применяют плоские индукторы, цилиндрических заготовок — цилиндрические (соленоидные) индукторы. В общем случае они могут иметь сложную форму, обусловленную необходимостью концентрации электромагнитной энергии в нужном направлении.

Особенностью индукционного ввода энергии является возможность регулирования пространственного расположения зоны протекания вихревых токов.

Во-первых, вихревые токи протекают в пределах площади, охватываемой индуктором. Нагревается только та часть тела, которая находится в магнитной связи с индуктором независимо от общих размеров тела.

Во-вторых, глубина зоны циркуляции вихревых токов и, следовательно, зоны выделения энергии зависит, кроме других факторов, от частоты тока индуктора (увеличивается при низких частотах и уменьшается с повышением частоты).

Эффективность передачи энергии от индуктора к нагреваемому току зависит от величины зазора между ними и повышается при его уменьшении.

Индукционный нагрев применяют для поверхностной закалки стальных изделий, сквозного нагрева под пластическую деформацию (ковку, штамповку, прессование и т. д.), плавления металлов, термической обработки (отжиг, отпуск, нормализация, закалка), сварки, наплавки, пайки металлов.

Косвенный индукционный нагрев применяют для обогрева технологического оборудования (трубопроводы, емкости и т. д.), нагрева жидких сред, сушки покрытий, материалов (например, древесины). Важнейший параметр установок индукционного нагрева — частота. Для каждого процесса (поверхностная закалка, сквозной нагрев) существует оптимальный диапазон частот, обеспечивающий наилучшие технологические и экономические показатели. Для индукционного нагрева используют частоты от 50Гц до 5Мгц.

Преимущества индукционного нагрева

1) Передача электрической энергии непосредственно в нагреваемое тело позволяет осуществить прямой нагрев проводниковых материалов. При этом повышается скорость нагрева по сравнению с установками косвенного действия, в которых изделие нагревается только с поверхности.

2) Передача электрической энергии непосредственно в нагреваемое тело не требует контактных устройств. Это удобно в условиях автоматизированного поточного производства, при использовании вакуумных и защитных средств.

3) Благодаря явлению поверхностного эффекта максимальная мощность, выделяется в поверхностном слое нагреваемого изделия. Поэтому индукционный нагрев при закалке обеспечивает быстрый нагрев поверхностного слоя изделия. Это позволяет получить высокую твердость поверхности детали при относительно вязкой середине. Процесс поверхностной индукционной закалки быстрее и экономичнее других методов поверхностного упрочнения изделия.

4) Индукционный нагрев в большинстве случаев позволяет повысить производительность и улучшить условия труда.

Индукционные плавильные печи

Индукционную печь или устройство можно рассматривать как своего рода трансформатор, в котором первичная обмотка (индуктор) подключена к источнику переменного тока, а вторичной обмоткой служит само нагреваемое тело.

Для рабочего процесса индукционных плавильных печей характерно электродинамическое и тепловое движение жидкого металла в ванне или тигле, способствующее получению однородного по составу металла и его равномерной температуры по всему объему, а также малый угар металла (в несколько раз меньше, чем в дуговых печах).

Индукционные плавильные печи применяют при производстве литья, в том числе фасонного, из стали, чугуна, цветных металлов и сплавов.

Индукционные плавильные печи можно разделить на канальные печи промышленной частоты и тигельные печи промышленной, средней и высокой частоты.

Индукционная канальная печь представляет собой трансформатор, обычно промышленной частоты (50 Гц). Вторичной обмоткой трансформатора служит виток из расплавленного металла. Металл заключен в кольцевом канале из огнеупора.

Основной магнитный поток наводит в металле канала ЭДС, ЭДС создает ток, ток нагревает металл, поэтому, индукционная канальная печь подобна трансформатору, работающему в режиме короткого замыкания.

Индукторы канальных печей выполняют из продольной медной трубки, он имеет водяное охлаждение, канальная часть подового камня охлаждается от вентилятора или от централизованной воздушной системы.

Индукционные канальные печи предназначены для непрерывной работы с редкими переходами с одной марки металла на другую. Индукционные канальные печи, в основном применяют для плавки алюминия и его сплавов, а также меди и некоторых ее сплавов. Другие серии печей специализированы как миксеры для выдержки и перегрева жидкого чугуна, цветных металлов и сплавов перед разливкой в литейные формы.

Работа индукционной тигельной печи основана на поглощении электромагнитной энергии проводящей садки. Садка размещена внутри цилиндрической катушки — индуктора. С электрической точки зрения, индукционная тигельная печь представляет собой короткозамкнутый воздушный трансформатор, вторичной обмоткой которого является проводящая садка.

Индукционные тигельные печи используют преимущественно для плавки металлов на фасонное литье при периодическом режиме работы, а также вне зависимости от режима работы — для плавки некоторых сплавов, например бронз, которые пагубно влияют на футеровку канальных печей.

Индукционный нагреватель металла. Принцип работы

Технология индукционного нагрева заготовок востребована не только в цехах горячей объёмной штамповки. Компактные индукторы необходимы, в частности, для автосервиса, занимающегося изготовлением и ремонтом стальных деталей из профилированного проката. Приобретать промышленный индуктор дорого. Есть ли альтернатива?

Как работает индукционный нагреватель?

Для реализации процесса индукционного нагрева используется известный физический принцип, когда для деформирования в горячем состоянии заготовку размещают в магнитном поле кольцеобразного индуктора. Питание такой катушки производится электрическим переменным током частоты, резко выше, чем обычная (50 или 60 Гц).

Принцип работы индукционного нагревателя следующий. Создаваемые в электромагнитном поле вихревые токи (у них есть и другое название – токи Фуко) производят нагрев металла. Непосредственное соприкосновение заготовки и нагревательного элемента не обязательно, важно только, чтобы индуктор равномерно охватывал нагреваемую поверхность металла. Используя трансформатор, установка подключается к генератору, который обеспечивает требующиеся значения мощности и частоты.

Индукционным нагревом можно обеспечить сравнительно быстрое повышение температуры поверхностных слоёв. В частности, для нагревания прутковой заготовки сечением 35…40 мм и длиной 140….150 мм потребуется около 20…25 с.

Примерные диапазоны соответствия наилучшей частоты тока и поперечного сечения круглого прутка приведены в таблице.

Для полосового металла применять индукционный нагрев менее выгодно, чем для круглого прутка, поскольку расстояние между внутренним диаметром катушки и металлом непостоянно.

Обычно применяется частота от 10 кГц, тогда КПД индукционного нагревателя достигает максимума. Частота регулируется в зависимости от:

  • требуемой производительности нагрева;
  • температуры нагреваемого металла;
  • размеров поперечного сечения.

Конструкции промышленных индукторов снабжаются устройствами для автоматической загрузки-выгрузки нагретых заготовок. Это необходимо потому, чтобы интервал между нагревом и пластическим деформированием металла был минимальным.

Время нагрева стальных заготовок невелико: для сечения 20 мм оно составляет всего 10 с, поэтому потери металла в окалину незначительны.

Индукционный нагреватель своими руками

Известен ряд конструкций индукторов, изготовленных из сварочного инвертора, принцип действия которых может быть использован для наведения в металле вихревых токов Фуко.

Изготовление самодельного индуктора заключается в следующем. Вначале потребуется изготовить прочный корпус, в котором будет находиться узел крепления нагреваемой заготовки. Корпус необходимо подвергнуть закалке, чтобы он не деформировался под воздействием возможных ударов. Ещё лучше, если материал подвергнуть азотированию: в этом случае реализуются два преимущества — дополнительное увеличение твердости за счет более полного превращения остаточного аустенита в мартенсит, и улучшение скин-эффекта, когда по внешней стороне заготовки будет протекать более мощный ток. Прочность оценивается по пробе на искру.

Следующей стадией является изготовление нагревающей катушки. Её делают из индивидуально изолированных проводов: в этом случае потери мощности будут минимальными. Подойдёт и медная трубка – она имеет большую площадь поверхности, по которой будут наводиться вихревые токи, при этом собственный нагрев индуктора из-за высокой электропроводности меди практически отсутствует.

Читать еще:  Как приварить оцинковку к металлу

После подключения катушки к системе водяного охлаждения и проверки системы прокачки индуктор готов к работе.

Рабочая схема

В состав нагревателя входят следующие составляющие:

  1. Инверторный блок, рассчитанный на напряжение 220…240 В, при токе не менее 10 А.
  2. Трёхпроводная кабельная линия (один провод – заземляющий) с нормально разомкнутым переключателем.
  3. Система водяного охлаждения (крайне желательно использовать очистные фильтры для воды).
  4. Набор катушек, отличающихся внутренними диаметрами и длиной (при ограниченных объёмах работ можно обойтись и одной катушкой).
  5. Нагревающий блок (можно применить модуль на силовых транзисторах, которые выпускаются китайскими фирмами Infineon или IGBT).
  6. Демпферная цепь с несколькими конденсаторами Semikron.

Генератор высокочастотных колебаний принимается тот же, что и у базового инвертора. Важно, чтобы его эксплуатационные характеристики полностью соответствовали тем, которые указаны в предыдущих разделах.

После сборки блок заземляется, и с помощью соединительных кабелей нагревательная индукционная катушка присоединяется к блоку питания инвертора.

Примерные эксплуатационные возможности самодельного индукционного нагревателя металла:

  • Наибольшая температура нагрева, ° С – 800.
  • Минимальная мощность инвертора – 2 кВА.
  • Продолжительность включения ПВ, не менее – 80.
  • Рабочая частота, кГц (регулируемая) — 1,0…5,0.
  • Внутренний диаметр катушки, мм – 50.

Следует отметить, что такой индуктор потребует специально подготовленного рабочего места – бака для отработанной воды, насоса, надёжного заземления.

Директор Новопашин Игорь Витальевич Тел/факс: +7 (343) 264-53-64

Тел/Факс: +7 (343) 264-53-64, +7 (343) 268-58-65,+7 (343) 264-53-65; E-mail: [email protected]

«Институт Электротехнологий» был основан в 1991 г. Основной вид деятельности – разработка и изготовление тиристорных преобразователей частоты для замены машинных генераторов, снятых с производства.

В настоящий момент ведется постоянная работа по разработке и внедрению современных индукционных нагревателей с использованием в качестве источника питания транзисторных и тиристорных преобразователей частоты, а также по созданию индукционных тигельных печей с донным сливом металла.

ЗАО НПП «Электротехнология» разрабатывает и производит установки для плавки, нагрева и закалки металла; индукционные плавильные комплексы; тиристорные преобразователи частоты; установки индукционные нагревательные; индукторы для плавильных печей; трансформаторы закалочные.

Вся продукция ЗАО НПП «Электротехнология» сертифицирована и неоднократно отмечена дипломами российских и международных выставок.

Области применения оборудования, выпускаемого ЗАО НПП «Электротехнология»:

  • термическая закалка и термообработка;
  • поверхностная закалка, термическое улучшение и снятие напряжений деталей машин, автомобилей, труб с целью повышения прочности;
  • нормализация и предварительный нагрев (до 200°С) для нанесения покрытия;
  • нормализация сварных швов рельсовых плетей с целью повышения прочности и долговечности;
  • индукционный нагрев для горячего пластического формообразования;
  • полный или частичный нагрев заготовок из медесодержащих сплавов и стали для последующей горячей формовки деталей;
  • индукционная плавка стали;
  • индукционная плавка цветных металлов;
  • индукционный нагрев для выращивания кристаллов;
  • высокотемпературный индукционный нагрев в защитной атмосфере для получения наноструктурированного углеродистого волокна
  • получение особо чистых материалов (кремния, окислов различных веществ);
  • непрерывный отжиг труб, проволоки, лент и др. Отжиг отдельных швов труб и деталей (стационарные и мобильные установки);
  • генерация электрической энергии;
  • получение переменного тока средней и повышенной частоты.

ИНДУКЦИОННЫЕ ПЛАВИЛЬНЫЕ КОМПЛЕКСЫ ИСТ

Плавильный комплекс с индукционной тигельной электропечью ИСТ-Х/Х УХЛ4 предназначен для расплавления и перегрева медносодержащих сплавов и стали в литейных цехах металлургических и машиностроительных заводов для получения металлических отливок высокого качества.

Поставляется в частично разобранном и нефутерованном виде.

В комплект поставки входят:

  • электропечь;
  • преобразователь частоты (ТПЧ) или трансформатор;
  • гибкие связи;
  • шинопроводы;
  • пульт дистанционного управления (ПДУ);
  • батарея конденсаторов; система охлаждения «вода-воздух» (теплообменник «вода-вода»);
  • комплект ЗИП;
  • техническая документация.

В зависимости от типа плавильного комплекса применяются следующее оборудование:

ЗАО НПП «Электротехнология» обеспечивает поставку плавильных комплексов и индукционных плавильных печей «Под ключ» , включая монтаж, пуско-наладочные работы и проведение контрольных плавок.

ИНДУКЦИОННЫЕ ВАКУУМНЫЕ ПЕЧИ

Индукционные вакуумные печи нашего предприятия это:

  • высокая надежность
  • глубокий вакуум;
  • экономичный расход электроэнергии на тонну металла;
  • высококачественные европейские комплектующие.

ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ

Преобразователь выполнен по схеме автономного инвертора с промежуточным звеном постоянного тока, в виде четырехдверного стального шкафа защищенного исполнения.

Система охлаждения узлов и элементов схемы – принудительная, замкнутая. На каждой ветви охлаждения установлены реле протока.

Управление режимом работы преобразователя – ручное и автоматическое с пульта дистанционного управления ПДУ. Возможно компьютерное управление режимом работы преобразователя.

Схемотехнические решения, заложенные в основу системы управления и силовой схемы запатентованы (патенты и свидетельства 2В67485; 14323; 795 и т.д.).

Высокий КПД (не менее 95%), высокая надежность и ремонтнопригодность, доступная современная элементная база, допустимый уровень шума – не выше 80 дБ, позволили успешно конкурировать с машинными генераторами типа ВПЧ, ОПЧ; ламповыми генераторами ВЧГ.

Силовое питание ТПЧ осуществляется трехфазным переменным напряжением 380В частотой 50 Гц от сети переменного тока или от индивидуального преобразовательного трансформатора с напряжением первичной обмотки 6 или 10 кВ.

ТПЧ имеет однофазный выход и предназначен для работы на нагрузку, состоящую из индуктора и батареи конденсаторов, предназначенной для компенсации реактивной мощности индуктора.

Режим работы длительный или повторно-кратковременный.

УСТАНОВКИ ИНДУКЦИОННЫЕ НАГРЕВАТЕЛЬНЫЕ

Установка индукционная нагревательная УИН ХХ УХЛ4 предназначена для нагрева труб из чугуна, стали, медьсодержащих сплавов на машиностроительных заводах для закалки, нормализации, отжига и предварительного подогрева до 200°С (для нанесения покрытий).

В составе: преобразователь частоты (ТПЧ); гибкие связи; шинопроводы; пульт дистанционного управления (ПДУ); батарея конденсаторов; комплект ЗИП; техническая документация.

Установка закалочная индукционная УЗИ 1,0У4 предназначена для закалки конца детали “игла” для получения необходимой по КД твердости, а также зонной закалки деталей аналогичного типа.

Установка УЗИ 1,0У4 состоит из высокочастотного генератора и нагревательного блока.

Нагревательный блок содержит нагрузку для генератора – Lс контур со щелевым индуктором и устройство для подачи и закалочной ёмкости с водой.

Режим работы — циклический с периодами охлаждения нагревательного блока

Конденсаторная батарея предназначена для компенсации реактивной мощности индукционных плавильных печей и закалочных установок.

Сигнализатор футеровки предназначен для контроля и сигнализации состояния футеровки тигельной печи.

Устройство и принцип работы.

Сигнализатор работает на принципе измерения тока утечки на землю через изоляцию электрической системы индуктора, а также через стенки тигля от индуктора к заземленному металлу. Сопротивление футеровки в начале компании невелико из-за не полной просушки тигля, в середине компании оно повышается и затем, по мере спекания и износа тигля снижается вплоть до нуля при коротком замыкании металла на индуктор.

Суммарное сопротивление системы индуктора относительно земли обычно составляет величину порядка нескольких кОм и может снижаться до сотен Ом и ниже, либо при разрушении футеровки, либо вследствие ослабления изоляции силовой цепи относительно земли. При настройке реле аварийного сигнала на срабатывание при суммарном сопротивлении футеровки и изоляции в пределах 3-10кОм, точное значение которого определяется в процессе эксплуатации, достигается предупреждение выхода металла к индуктору и предупреждается авария, а также может быть получен сигнал о нарушении изоляции печного контура относительно земли.

В целом сигнализатор при его правильной эксплуатации не устраняет необходимости визуального контроля состояния тигля, является средством, позволяющим более надежно эксплуатировать индукционные плавильные печи.

Теплообменник предназначен для обеспечения обмена тепла между рабочей жидкостью и охлаждающей водой в двухконтурной системе охлаждения. С помощью рабочей жидкости (воды) отводятся электрические и тепловые потери в конструктивных элементах установки.

Вся продукция, выпускаемая ЗАО НПП «Электротехнология», выделяется в своем классе:

  • экономичностью;
  • компактными размерами;
  • возможностью регулировки рабочей частоты;
  • адаптацией к различным технологическим процессам нагрева.

Индукционное оборудование разработано и изготавливается в соответствии с мировыми стандартами наряду с учетом технических особенностей и норм, предъявляемых Российскими предприятиями.

На все оборудование предоставляется гарантийный срок — 12 месяцев со дня ввода в эксплуатацию.

Предприятием налажено развитое послегарантийное сервисное обслуживание.

Индукционная печь – это металлургическая печь, предназначенная для разогрева металла индуцированными вихревыми токами. Индукционная печь устроена так, что представляет собой наклонную конструкцию для плавного слива металла (технология индукционная). Печь сконструирована таким образом, что индукционный ток воздействует изнутри (индукционная плавка за 45 минут). Нужна литейная индукционная печь с удобной конструкцией? ZAVOD RR – индукционные печи для чугуна и стали, закалки и плавки от профессионалов!

Содержание

Применение

Индукционная печь широко применяется на больших и малых предприятиях для плавки металлов (цветных и черных). В индукционных литейных печах металл или сплав нагревается до изменения своего агрегатного состояния.

При этом, канальные печи, несмотря на более высокий КПД используются гораздо реже — в основном, для получения чугуна высокого качества и сплавов, температура плавления которых является относительно низкой, а также для плавления цветных металлов. Для стали такие печи не используются, так как температура ее плавления способствует сильному снижению стойкости футеровки (защитной отделки). Также нельзя плавить низкосортную породу, стружку и мелкую породу.

Тигельные печи применяются гораздо чаще из-за простоты эксплуатации и более широких возможностей управления процессом, включая возможность нерегулярного и прерывистого режима работы. Они хороши как для производства большого количества литья в несколько десятков тонн, так и для небольших порций, измеряющихся десятками грамм.

С помощью тигельных печей осуществляется плавка легированных сталей и прочих сплавов, для которых нужна особая чистота химического состава и однородность.

Индукционные печи на гидравлике

В базовый комплект поставки включены два плавильных узла на гидравлике, тиристорный преобразователь и гидравлическая станция. Плавильные узлы располагаются на заранее подготовленный фундамент, перед запуском требует футеровки. Под каждую шихту используется своя футеровочная масса. В качестве системы охлаждения рекомендуем использовать градирню.

Индукционная печь пользуется спросом у средних промышленных предприятий с производительность от 2000 тонн/год.

Индукционные печи на редукторе

В базовый комплект поставки входят два плавильных узла на редукторе, тиристорный преобразователь и сопутствующее оборудование как редуктора, гибкие токопроводящие медные кабеля. Плавильные узлы располагаются на заранее подготовленный фундамент, перед запуском требует футеровки. Под каждую шихту используется своя футеровочная масса. Для охлаждения индукторов плавильных узлов рекомендуем использовать градирню.

Индукционная печь пользуется спросом у малых промышленных предприятий с производительность от 2000 тонн/год.

Мобильные индукционные печи

  • Мобильность, не требует изготовления фундамента, можно переместить в любую часть помещения за несколько минут;
  • Экономичность, собрана на базе MOSFET транзисторов и IGBT модулей, что дает экономию по электроэнергии до 30%, высокий КПД 99%;
  • Обслуживание, используют графитовый тигель, поэтому не надо тратить драгоценное время на изготовление футеровки и ее сушки.

Индукционная печь для стали

Индукционная печь для стали работает на средней частоте (0,5-2,4 кГц). Плавка стали происходит в футеровке, которая выдерживает от 10 до 40 плавок. Индукционные печи ИСТ бывают разной загрузки и емкости, они комплектуются двумя видами преобразователей: тиристорными и транзисторными. Печи ИСТ высокопроизводительны, поэтому за одну рабочую смену можно произвести до 6 плавок. Благодаря системе контроля износа футеровки, можно избежать непредвиденных ситуаций и аварий.

Индукционная печь для чугуна

Для плавления и перегрева (применяется для повышения прочности) чугуна больше всего подходит серия ИЧТ. Эти печи с отходами металлообработки и позволяют получить качественный синтетический чугун. Индукционная печь для чугуна экономична, так как работает при токе промышленной частоты. Благодаря многоступенчатой системе защиты от внешних воздействий и простоте обслуживания, данный вид печей занимает лидирующие позиции на рынке России.

Индукционная печь для алюминия

Серия индукционных печей, предназначенных для алюминия и его сплавов — ИАТ бывает двух типов: на промышленной частоте и на средних частотах. Второй тип используется, ля получения чистых металлов, что достигается сохранением поверхностной окисной пленки во время процесса расплавления. Тиристорный преобразователь частоты. Мощность регулируется с помощью переключения ступеней трансформатора вручную.

Принцип работы

Основополагающим является принцип передачи трансформаторного типа. Внутрь индуктора-соленоида (или рядом) помещается заготовка. Переменный ток подается на индуктор, в результате чего возникает изменяющееся магнитное поле, которое пронизывает нагреваемый объект, индуцируя поле вихревого характера (замкнутые силовые линии). Это поле нагнетает вихревые токи, вследствие чего заготовка нагревается (закон Джоуля-Ленца).

Технические характеристики

К основным характеристикам индукционных печей относятся:

  • — название металла, подлежащего плавлению;
  • — емкость в тоннах;
  • — мощность в киловаттах;
  • — напряжение и частота питающей сети, номинальное значение тока и число фаз.

Также в технической документации указывается: температура перегрева металла, частота тока и число фаз контурной сети, производительность, скорость получения расплава и перегрева с удельным расходом электроэнергии, мощность питающего трансформатора, расход охлаждающей индуктор воды и другие данные.

Специалисты нашей компании представляют в своих инструкциях к индукционным печам полный перечень технических характеристик с подробными схемами и рекомендациями.

Футеровка — это защитная отделка, предохраняющая объект от всевозможных повреждений. Производительность и надежность работы индукционных печей в большой степени зависит от качества футеровки.

Ее выбор особо сложен для печей канального типа. Наиважнейший их элемент — подовый камень нуждается в особой защите, так как в нем находятся кольцеобразные каналы, всегда заполненные жидким металлом, а в центе — отверстие, в которое вставляется средний стержень сердечника с первичной катушкой трансформатора. Чтобы защитить такую композицию нужен очень тщательный расчет для каждой печи с учетом всех свойств применяемых материалов.

Футеровка индукционной тигельной печи проще и надежнее. Она состоит из собственно тигля, подины (нижняя часть, формирующая ванну), керамического волокна и обмазки. Вообще существует множество разновидностей футеровок для индукционных печей, которые учитывают все особенности для выплавляемого материала.

Так, для черных металлов бывает футеровка на основе кремнезема, или плавленого магнезита, или глинозема. Для алюминия — жароупорный бетон. Для спекания футеровочной массы в момент нагрева используют буру, борную кислоту, жидкое стекло, глину и пр.

Обязательно постоянно проводить профилактический контроль футеровки и, при необходимости, ее ремонт и своевременно заменять изношенные тигли, как только толщина его стенок уменьшится на 30 %.

Основа схемы канальных печей — замкнутое электропроводное кольцо, состоящее из многовиткового индуктора, насаженного на замкнутый стальной сердечник, и размещенной вокруг него футеровки с кольцевым каналом, в котором постоянно находится жидкий металл. Существует множество конструкций таких печей: однофазовые и многофазовые, с разным количеством по-разному размещенных каналов.

Основа схемы для индукционной тигельные печи:

  • — индуктор — катушка, по которой протекает ток заданной частоты;
  • — за катушкой диэлектрический слой (например, кирпич);
  • — затем тигель, в котором производится плавка.

Чтобы катушка не перегревалась во время работы система охлаждения водой.

Индуктор тигельной печи — это первичная обмотка, а сам расплавляемый металл, загруженный в тигель, в центр индуктора — вторичная. Это очень удобно, и сам тигель иногда даже не нужен.

Подробные схемы для тигельных печей все разные, потому что существует множество разнообразных конструкций с совершенно разными параметрами работы.

На мощность индукционных печей напрямую влияет частота переменного магнитного поля, потому что от него зависит циркуляция наведенных вихревых токов, ответственных за преобразование электромагнитной энергии в тепловую.

Если для канальных печей с их высоким КПД промышленной частоты достаточно, то в случае тигельных устройств отсутствие стального сердечника влечет за собой увеличение магнитного потока рассеяния, и слишком мало силовых линий пронизывает расплавляемый металл, а естественный коэффициент мощности очень мал. Поэтому тигельные печи зачастую нуждаются в питании током повышенной и высокой частоты и в помощи компенсирующих конденсаторов.

Индукционные литейные печи

Каждая индукционная литейная печь, может оснащаться двумя видами преобразователей, как правило тиристорный преобразователь более дешевый и комплектуется печами высокой мощности, а транзисторный более экономичный по расходу электроэнергии:

Тиристорные преобразователи частоты применяются для питания индукционных литейных печей, они работают по обычному двухэтапному принципу:

  • — выпрямитель преобразовывает переменный ток сети в постоянный;
  • — инвертор преобразовывает этот постоянный ток опять в переменный, но уже нужной частоты.

Тиристорные преобразователи могут работать с большим током и напряжением и при этом выдерживают продолжительную нагрузку. Их КПД выше, чем у преобразователей на IGBT-транзисторах.

Транзисторные преобразователи частоты. Транзисторые преобразователи частоты используются для питания индукционных печей, в которых можно расплавить до 200 кг цветных металлов и до 100 кг черных металлов, в печах типа ИПП. Такие печи чаще всего используют в лабораторных условиях для опытных плавок, когда есть необходимость быстрой смены сплава.

Среди несомненных достоинств транзисторных преобразователей — компактность, легкость в управлении и бесшумность работы.

Особенности установки

Каждая конкретная индукционная печь укомплектована, помимо всего прочего, подробной инструкцией, содержащей подробные технические данные и правила эксплуатации.

Наиважнейшие из них предусматривают:

    • — строгое слежение за температурным режимом во время эксплуатации, так как даже незначительное нарушение разрушить футеровку;
    • — температура воды, поступающей к индуктору должна быть достаточно высокой для данного помещения, иначе возможно образование большого количества конденсата на трубках индуктора водяных паров, и возникнет опасность электропробоя между витками индуктора;
    • — перегрев воды на выходе из индуктора также недопустим, во избежание образования накипи на стенках труб, нарушающей теплообмен;
    • — размещение оборудования в закрытых помещениях, расположенных не выше 1 км над уровнем моря, с положительной температурой, нормальной влажностью воздуха без агрессивных примесей.

За работой индукционных печей должны следить квалифицированные специалисты, проводить профилактический осмотр и вовремя устранять недостатки.

Нужна более подробная информация на индукционные печи?

Москва + 7 (499) 649-29-80
Санкт-Петербург + 7 (812) 426-33-17
Челябинск + 7 (351) 729-83-71

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]